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ABSTRACT

This paper concerns a generalization of finite automata, the "tree
acceptorn,” which have as their inputs finite trees of symbols rather than
the usual sequences of symbols. Ordinary finite automata prove to be special
cases of tree acceptors, and many of the results of finite automata theory
continue to hold in their appropriately generalized forms. The tree acceptors
provide new characterizations of the classes of regular sets and of context~
free languages. The theory of tree acceptors is applied to a decision problem
of mathematical logic. It is shown here that the weak second-order theory of
two successors is decidable, thus settling a problem of Buchi. This result is
in turn applied to obtain positive solutions to the decision problems for
various other theories,e.g. the weak second-order theories of order types built
up from the finite types, w, and 7 (the type of the rationals) by finitely many
applications of the operations of order type addition, multiplication, and
converse; and the weak second-order theory of locally free algebras with only

unary operations.
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*
TREE ACCEPTORS AND SOME OF THEIR APPLICATIONS

INTRODUCTION

This paper concerns a generalization of a part of finite automata theory.
We shall define a generalized finite automaton, called a '"'tree acceptor,”
which has as its inputs finite trees of symbols instead of the usual sequences
of symbols. Ordinary finite automata prove to be special cases of tree
acceptors. It turns out that many of the results of finite automata theory

remain valid in their appropriately generalized forms.
M
Section 1 includes the definitions of trees and tree ncceptor:, and the

development of some of their basic properties. The properties of the sets of
trees accepted by tree acceptors are investigated and an alternative characteriza-
tion of those sets is obtained. An application of the results in Seetion-1 to

the theory of context-free languages is given im-Section 2. In -Seetion-3, we

give a positive solution to a problem of Buchi {1]: 1Is the weak second~order
theory of two successors decidable? Appiications of this result to decision
problems of weak second-order logic appear in .Section 4; for example, we show

that the class of order types with decidable weak second-order theories contains
w, every finite type, and the type of rationals, and is closed under the order-

type operations of addition, multiplication, and converse. Finally in Section 5,

*Relearch sponsorcd in part by the Air Force Cambridge Research Laboratories,
Office of Aerospece Ru  ‘ch, USAF, under Contract F1962867C0008, and by the
Air Force Office ofScienciiic Research, Office of Aerospace Research, USAF,
under AFOSR Grant No. AF-AFOSR-1203-67.
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a result of Buchi [2] and the generalized products of Feferman and Vaught are
utilised to extend the decidability result of Section 3 to a more general
case: the weak second-order theory of locally free algebras with only unary

operations.

Many of the results in Sections 1 and 3 of this paper were also obtained
by J.W. Thatcher and J.B. Wright [28], who use a different, but essentially
equivalent, formulation of generalized automata. In fact, Thatcher and Wright
were very close to obtaining the decision result in Section 3 when they were
notified by Addison (personal communication) of the present author's success.
The characterisation of context-free languages given in Section 2 is basically

that given by J. Mesei and J.B. Wright [19], in a different formulation.

The author wishes to thank Professors J.W. Addison and Alfred Tarski for

many stimulating discussions and useful suggestions.

PRELIMINARIES

We shall employ standard set-theoretical notions: N, U, €, etc. A ~B
denotes the difference of the sets A, B, i.e., A~B = {x: x ¢ A and x ¢ B}.
Each ordinal number is defined as the set of all smaller ordinals; O, the first
ordinal, is equal to the empty set @#. Thus, the < relation among ordinals
coincides with the membership relation €. Finite ordinals O, 1, 2, ... are
called utuﬁl numbers and the set of all of them is the first finite ordinal
w. Cardinals are initial ordinals, i.e., ordinals not set-theoretically

equivalent to smaller ordinals. The cardinality of a set A is denoted by A.
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If a function f is defined for each element of a class K and A € K, then
f(A) = {f(x) : x € A}, The domain of a function £ is denoted by dom(f).
Assertions of the form '"C is the class defined by the conditions...” or "¢
is the least class such that..." are to be interpreted to mean that C is the

intersection of all classes satisfying the stated conditions.

Our notation for automata, words, languages, etc., is, for the most part,
adapted from [21] and [14]. An alphabet I is a nonempty finite set of symbols
(or letters). Unless otherwise stated, the letters £, A, w, Z', A', ... will
denote alphabets. A word over I, or simply a word when Z is understood, is a
finite sequence of elements of Z. A word with only one letter ¢ is identified
with o itself; € denotes the empty word, and concatenation of words is indicated
by juxtaposition. (To facilitate the use of these conventions, we implicitly
rule out various 'pathological" cases, e.g., we do not admit ¢ as a possible
element of an alphabet.) Usually, the small greek letters o, £, u, v are used
for single elements of an alphabet, and small Roman letters u,v,w,x,y,z for words
over an alphabet. The length of a word w is denoted by |w] . If A, B are sets

.

of wordg then A * B = {xy : x cAand y € B}. A° = {c}, and for each finite
*
n, Anﬂ =A" - A; the union L_{1 <w A" is denoted by A'. 1In particular, if A

*
is an alphabet, then A 1is the set of all words over A.

A set of words A is regglax.' if for some alphabet Z, A is a member of the
last class C such that: (1) every finite subset of =¥ belongs to €, (ii) €
is a Boolean algebra of sets (i.e., if X, Y€ G, then X NY, X UY, X ~Y are
also members of @), (1i1) if X, Ye @, thenX * Y € @, and (iv) 1f X € ¢, then

*
X €C.
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If Z {s an alphabet, then a L-automaton is & L~tuple Y = (s,t,oo,b) where
S is a nonempty finite set (of states), t is a mapping of S X Z into S (the
transition function), s, €5 (the initial state), and D € § (the designated
states). We associate with 9 the function t, defined recursively: t(e) = s o’
and for any w € £ and o €L, t(wo) = t(t(w),0). 9 accepts a word w € ¥ 1f
t(w) € D; T(Y) denotes the set of words accepted by Y. We note the well-known
result of Kleene:
A set of words A is regular if and only 1f A = T(¥)
for some Automaton %.
Throughout this paper we accept as given a fixed infinite list of distinct
letters .o’ .1’ ese o Thealphabets {ao,...,ap}, p < w, will play a special role.

The symbols 8,08,,8; will also be denoted by &, b, c respectively.

i 5 RERES i i R0 TN e TR AR el 1 K AL o R ARSI S50 e o e
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SECTION 1. TREE ACCEPTORS AND RECOGNIZABLE SETS

DEFINITION 1.1. A L-tree, or a tree over L, of order p, p > O, is a function
*
T : A~ LI where A is a finite subset of [‘o""’.p-l] closed under the initial

segment relation (i.e., 1f uv € A, then u € A).

The small Greek letters T, m, p, T',... will be used for trees. We adopt
the following special notation for trees: The value of a tree 7 at a word

v ¢ dom(r) may be denoted by T, 88 vell as (w).

Figure 1 presents graphic representations of two trees over the alphabet
{0,8,4,v]}. In each of the diagrams, the value of the tree at ¢ appears at the
apex; below and to the left of the apex is the value at a, below and to the
right of this, the value at b, etc. Thus Figure 1(a) is a diagram of the tree
Twhere 1 =0, T "4, T._ "W, 'r.b'g, T, "V Ty T Wy and T is undefined

€ s aa
elsevhere. The trees in Figures 1(a) and 1(b) are of orders 2 and 3 respectively.

oe® 7 v

S T N
AN A A

T,

1(a) 1(b)

Figure 1. 1Two Trees Over the Alphabet {o,§,u,v].
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The class of all Z-trees of a given order p will be denoted by 8'; vhen
we use this notation, the number p will always be either determined by the
context or understood to be arbitrary. In most of this section, we shall
restrict our consideration to trees of order 2, i.e., trees vhich are functions
with domains which are finite subsets of [n,b}’. This is done merely for
notational convenience; and, usually, the reader will easily be able to supply
the rather obvious modifications to our definitions, theorems, and proofs which
are required for the transition from order 2 to any finite order p. Pollowing
Theorem 1.16, we shall make some further remarks concerning the relationships

between sets of trees of various orders.

The empty tree, i.e., the function with domain @, is denoted by A. A
convention of considerable convenience which we shall adopt is the following:
for any tree T and word w, we write 1 = ¢ if and only if w ¢ dom(1). Thus,

A could be defined as the unique tree satisfying the equation T, = €. 1f
c € Z, we identify the Z-tree T such that T "0 and T, "€ for all v # ¢ with
the symbol o itself (of course, o is also identified with the one letter word

o; nevertheless, no confusion will result from these conventions).

A terminal of a tree T is a word w € dom(r) such that no extension of w is
also in dom(T). The set of all terminals of 7 is called the froptisr of T,
denoted by fr(7). The "subtree of T beginning at w" is t[\y, Formally, 1if «
is a Z-tree and ¥ € 2*, then 7\ v is the I-tree m such that LA for each
e[a,b]*. It 7, T' are I-trees, then T[w/r] is the result of replacing the

subtree of 7 beginning at w with the tree 7', i.e., T[w/T'] is the function n

such that
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v 'r", for all v € {a,b}*

LA for all u ¢ {c,b]* ~ ([w]°[n,b}*).
Notice that 7(w/1'] is a L-tree only in case v € {ua, ub : uc dom(7)ju {c}.
For o€ZLad 7, 1 € }:#, we put ofr,7'] = (ola/7]) (b/7']). Thus of[r,7'] 1is
th- unique tree m such that m_ = o, nMa = 7, and T\b = 7', Every tree except

A can be expressed in the form o[r,1'] for some o, 7, T'.

The notation o(7,7'] facilitates a form of proof which we call "tree
induction”; namely, if for a given proposition P(t), where T ranges over I-trees,

ve can prove

(1) Ha)

(44) it P(t) and P(7'), then P(o[7,7']) for every o € I,
then we infer P(T) for every T € Pl Corresponding to the principle of tree

induction is a form of definition, "tree recursion.'

The depth of a tree 7 is || 7|l = 1 + n, where n is the length of the longest
word in the domain of t. An alternative definition of depth is by tree

recursion:
Iall =0
Nolw, 731l =1 + max(|l<ll, [I+'I]).

Proofs by tree induction are, of course, simply inductions on depth; a similar

remark applies to definitions by tree recursion.
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The concept '-tree’ may be regarded as generalizing the concept "L-word."
The practice of defining sequences as functions of a special kind is common in
mathematics; when we construe a Z-word as a function with range £ and with domain
& finite set consisting of all initial segments of some words in [a}*, the

generalization to I~-trees becomes obvious.

Other representations of trees than the one we have given in Definition 1.1
are more common in the literature. Salient among these is the definition of a
tree as a partial ordering satisfying certain conditions. This definition does
not lend itself to our purposes, since we wish to maintain the distinction

between left- and right-branching.

Another approach, quite equivalent to ours, but which we prefer not to
adopt here, represents trees as terms in a formal language: The elements of T
are construed as 2-place function symbols (or p-place function symbols for trees
of order p) and a new symbol, A, which serves as a constant, is introduced.

The empty tree A is represented by the term \, and for any c € Z and T,
T 62#, if §, ¢' are the terms representing T, 7' reséectively, then oy, y')
is the term representing o[7,7']. Thus, the tree in Figure 1(a) is represented

by the term
(1) ole(e(x,n), E(AN)), v(n,u(r,n))).

(Notice that the notations we have adopted enable us, in effect, to sometimes
make use of the "term representation of trees"; in line (1), we have only to
replace the round parentheses (, ) by brackets [, ] and the symbol A by A to

obtain a correct expression for a tree of Figure 1(a).)

SRS —— v
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The representation of trees as terms in a formal language has its advantages
in certain contexts. It is essentially the approach used by Thatcher and Wright
in [28]--their "generalized finite automata” have terms as inputs, and using
these, they obtain many results closely related or identical to those which

appear in Sections 1 and 3 of this paper.

Most of the remainder of this section will be devoted to the development of
a generalized notion of finite state acceptors, or finite automata, which admits
trees rather than words as their inputs. It turns out that a large part of
conventional finite automata theory continues to hold in the generalized context.
Thus, our general espproach and most of the theorems and proofs in this section
(and in Section 3 as well) are rather natural adaptations of material found in
the literature on finite automata. We are particularly iadebted to Rabin and
Scott [21], and to Elgot [10]. Occasionally when a proof is very similar to its
corresponding version in one of these papers, we will mesoly sketch it or omit

it entirely.

DEFINITION 1.2. A I-tree acceptor is a L-tuple U = (S,t,so,D) where

(1) S 1s a nonempty finite set (of states);

(11) t is a mapping of S x 5 X & into S (the transition function);

(111) s, €8 (the initial state);

(iv) D c s (the set of designated states).

Associated with 9 is the function t : ¥ — § defined by
t(A) = 8,

E(U[T:T']) = t(t-('r)’ E("'.)) o),
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forallg€cZ and 7, 7' € sty accepts a tree T € F 1f t(r) € D. 'T(%)

denotes the set of Z-trees accepted by 9.

DEFINITION 1.3. Let 9 = (S,t,so,D) be u Z~-tree acceptor and let r € E#. The
§-tree m Y~compatible with 7 (or simply compatible with rt when W is understood)

is defined by
(1)  dom(n) = {e} U (dom(7) - {a,b}),
(11) n, - E(t\w) for each w € dom(m).

The tree m compatible with T might also be called the state tree of 7.
Notice that |[n]| = 1 + I|7||. This is analogous to the situation with finite
automata, where a sequence of states compatible with an input word is always

one term longer than the word.

LEMMA 1.4, If W = <S,t,l°,D) is a Z-tree acceptor, T € Z#, and m is compatible

with 7, then v € T(Y) if and only if m_ € D.

DEFINITION 1.5 A set A < Z# 1s recognizable (over Z) if A = T(Y) for some

Z-tree acceptor U. 1

z , then a set A © Z’f is recogni-

LEMMA 1.6. 1If Z are alphabets and Z, ¢ &

1’ 72 1 2
zable over 2‘.1 if and only if A is recognizable over 22.

THEOREM 1.7. The class of recognizable sets is a Boolean algebra; i.e., it is

closed under finite unions, finite intersections, and differences.

l".l.'l'le term recognizable was introduced by Mezei and Wright in [19].
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PROOF. Let A, B be two recognizable sets; in view of 1.6, we may assume that
they have a common underlying alphabet . Let U = (S,t,so,D) and

9= (S',t',sc',,D') be IZ-tree acceptors such that T(U) = A and T(®) = B. We
shall construct acceptors §, €' §'' such that T(§) =A UB, T(S') = A N B,

and T(C'') = A ~B. Let
€ =(s xs',r, <8°,3;>)E>
where
r(<31:3i): <32’5é>)°) - <t(31,32:‘3)) t'(!i,sé,d))
for all 817 8 €S, si, sé €S',0€Z, and E =S xD' yD x S'. The acceptors
G', €'' are obtained from § be replacing E by D x D' and D x (s' ~ D'),

respectively. It is easy to verify (e.g., by tree induction) that §, €', §''

possess the desired properties.

Note that in the proof of Theorem 1.7, the construction of §, ¢', €'' from

the given acceptors U, B is effective.

The concept of ''mondeterministic automata' has proved useful in finite
automata theory; although nondeterministic automata are equivalent to ordinary
automata with respect to sets of words accepted, they nevertheless are often
considerably more convenient to use in the course of proofs. An entirely

analogous situation exists in the context of tree acceptors.

DEFINITION 1.8. A nondeterministic I-tree acceptor is a 4-tuple ¥ = (S,t,I,D)

wheze

(1) S is a nonempty finite set (of states);
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\

(11) ¢t is a mapping of S X S X T into the nonempty subsets of S (the

transition function);

(i11) I 1is a nonempty subset of S (the initial states);

(iv) D < S (the subset of designated states).

When it is necessary to emphasize the distinction, we shall refer to the

tree acceptors of Definition 1.1 as deterministic tree acceptors.

DEFINITION 1.9. Let ¥ = (S,t,I,D) be a nondeterministic I-tree acceptor.

The relation of compatibility between Z-trees and S-trees is defined by the

=
following two conditions (i) if s € I, then s is compatible with A; (ii) if

m, n' are compatible with v, 7' respectively, and if c € £ and 8 ¢ c(ne,né,o),
then s [w,n'] 1s compatible with ofr,7']. U accepts a tree T € Z# if there
exists an S-tree T compatible with T such that m. € D. T(¥) denotes the set of

Z-trees accepted by ¥U.

Just as with finite automata, it turns out that the class of sets accepted
by nondeterministic tree acceptors is the same as the class of sets accepted by
deterministic tree acceptors, namely, the recognizable sets. Specifically, by
means of an entirely straightforward generalization of the well-known ''subset

construction"” used in the proof of Theorem 11 of [21], we obtain

THEOREM 1.10. If ¥ is & nondeterministic Z-tree acceptor, then a deterministic

I-tree acceptor ¥' such that T(¥) = T(U') can be effectively obtained.

The following theorem and its corollary are also analogous to corresponding
results of automata theory. Their proofs, however, although based upon ideas

similar to those in the proofs of the corresponding results, do entail some

additional technicalities.
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THEOREM 1.11, Let Y = (S,t,so,D) be a I-tree acceptor. Then T(¥) ¥ ¢ if

and only if there exists a tree T € T(¥) such that 7| < .

PROOF. We need only establish the "only if" part of the equivalence. For any
TE Z‘.#, let n(T) be the cardinality of the set of w € dom(r) with |v] 2 5.

We wish to show that if T(Y) # ¢, then n(t) = 0 for some 7 € T(Y). We shall
give a procedure which, when applied to any given T ¢ T(Y) such that n(T) > 0,
yields a tree ' ¢ T(Y) with n(7') < n(7). Applying this procedure finitely

many times leads to a tree t'' € T(¥) such that n(7'') = 0.

Accordingly, let t € T(¥) be such that n(t) > 0, let w be a terminal of T
such that |w| 2 S, and let mbe an S-tree compatible with t. Now wa € dom(m)
and lwal > §; hence, there exist words x, y, z such that y # ¢, wa = xyz, and

mT =1 _ . Let
X Xy

n = nlx / n]Mxy],

v = 1[x / vMxyl.

Then 11' is compatible with 7', rr:: =T, and hence 7' € T(U). Because y #¢,

we have w ¢ dom(7'), and since dom(7') < dom(T), it follows that n(T') < n(T).

COROLLARY 1.12. If U is any tree acceptor, then it is effectively decidable

whether

(1) T(¥) =¢;
(11) T(¥) is finite.
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PROOF. Part (i) is immediate from Theorem 1.11, since the set {7 : ||7|| < §)
is finite and it is effectively decidable whether 7 ¢ T(U). We shall establish

part (ii) by showing that T(U) is infinite if and only if the set
A={r:||=28and e T(u))
is not empty and that it is effectively decidable whether A = ¢,

Clearly, if T(Y) is infinite, thenA#@. Now assume that A # ¢. Let
¥, 7, m, x, y be as in the proof of Theorem 1.11, and note that T € A. We

define trees 'r(n) € Z#, 'rr(n) € S# for each finite n by recursion:

'r(o) =T, n(o) =,

'r(nﬂ) = t[xy / T(n)l\ x] n(n+1) = nlxy / "(n)h x].

(n)

Then, for each n,n(n) is compatible with T(n), rrgn) = and hence T € T(¥).

This shows that A # § implies T(Y) is infinite,

Our demonstration that A # ( is effectively decidable involves a modification
of the construction in the proof of 1.11. Without sacrificing the essential
properties of the procedure given there, we may add the requirement that x be

of maximal length in
{x' : . = "x'y' for some y', z' such that x'y'z' = wa and y' # ¢].

From this maximality condition on x it follows that |y < S. Now suppose that

the transition from T to 7' is the last application of the procedure in the

proof of 1.11, viz.,
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n, T €T, ||t 28, ¢ =[x/ 7| xy], and ||7']| < §.

Then ||v|| = [|+'I| +|y] and hence § < ||7|| <2 + §, Thus, A # @ 1f A' # ¢, where

A = {r:7eT(¥) and § < ||7| <2 * §}.
Clearly, it is effectively decidable whether A' # @,

Many characterizations of the regular sets are known in the literature.
The earliest, due to Kleene, states that a set of words is regular iff it
is the set of words accepted by some finite automation. Among the others, we
have, for example, that the regular sets coincide with the sets generated by
right-1linear grammars (Chomsky and Miller (6]), with the sets definable, in a

special sense, in a formal language (Buchi [1]; Elgot [10]), and with the sets

which are the unions of some of the equivalence classes of a congruence relation

of finite index (Myhill [20]). In this paper we shall add two new characteriza-

tions of the regular sets to the list; these ars Theorem 1.16 and Corellary 3.1ll.

It seems natural to inquire whether some of the characterizations of the
regular sets can be generalized to characterizations of the recognizable sets.
This is indeed the case. Thatcher and Wright in their paper [28] give such a
generalization of the "+, * characterization”" of the regular sets. Here, we
shall develop a characterization of the recognizable sets which generalizes
Theorem 3.6 of Elgot [10]; many of the ideas involved are closely related to
those of Medvedev, [18]. It turns out that this particular characterization is

well suited to our later work in Sections 2 and 3.
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If & is any alphabet and g, o', ¢'' € £ U {€}, we denote by !z(o,o',a")

the set of all I-trees T such that, for some w, TG T " o', and Tab o',

Note that in particular, E:(e,e,e) -E#, while if one of o', o'' is not ¢, then

Bz(e,a',o") =@, For o € L, the condition that 1y "0 for some v ¢ fr(r) 1s
expressed simply by T € Ez(o,e,e).

Given two alphabets I. and 22, we say that a mapping g : 8'{ - Eg is a

1
projection (of }:f into 212’) if g(A) = A and (3('r))w = g(-rw) for all w. (In

other words, a projection is the natural extension of a mapping of }.‘.1 into 22

to a mapping of E"{ into Zg.) If we are given a mapping of I, into }:2, we speak

1
of the projection defined by this mapping, with the obvious meaning.

Let R be any ternary relation on I {J {e]. We say that a tree 7 ¢ Z‘.# is

*
R-consistent if R(Tw, ,wa) holds for every w ¢ {a,b} .

T
wa

DEFINITION 1.11. The class @ is the least class of sets containing each

Bz(cr,c',o") and closed under the Boolean operations (i.e., U,N. amd ~) and

under arbitrary projections.
LEMMA 1.14. Let = be any alphabet, A < Z.#, and BC X,

(1) If R is a ternary relation on £ | {c], then the set of R-consistent
trees is a member of R.

(11) 1f A< w, then A € Q.

(141) IfA € R, then {tr : T €A and Te € B} € R.

(iv) IfA€R, then {t : T € A and T, € B for every v € fr(r)}
is a member of R.
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PROOF. To prove (1), we let C be the union of the sets !z(c,a'o' ) such that
R(0,0'c"') does not hold, and £ind that t'~ C 1s the set of R-consistent trees.

(0f course, P € R, since, as noted above, it - (¢,€,e)0)
&

To establish (11), it suffices to showv that {1] € R for every 7 € . 1e
T = A, then {7} -z ~ e I:(o,e,c). Now suppose T # A. For each w € dom(7),
let g(") be a distinct new symbol, and put g(") = ¢ for each v ¢ dom(T). We let
MTe {;(‘" :w ¢dom(t)], and defines the relation R on Ty {c] by
l(g(") ,;(“) ,g("b)) for every w. There is just one R-consistent tree m € ﬂ#,
and, by (1), {n) e R. Let g : M = £¥ be the projection defined by ;(g(“')) LE
for each w ¢ dom(7). Then g({n}) = {+], s0o {t} € n.

Next, assume that A ¢ R. Let € be a symbol not {n L, and put Z' =Z | {€].
Let R = (Z' y {e}) x (£ U {€]}) x (Z y {e]), and let C be the set of R~consistent
IZ'~trees. Then C c @ by (1), and for 1 ¢ C we have 1, " S only in case w = c.

For each o € L, p_ is the projection of £ tnto hdefined by pa(g) = g and
po(p.) =, for all y € E. We then have

. - c ~ ¥
{t:7€Aand T € B} an[po\c Z¥) N aAl.
This proves (iii).
Finally, to establish (iv) we merely note that

Anz? ~U$U[€}!£(o,e,e)] = {r: 1¢€Aand 1, € B for every v ¢ fr(r)}.

THEOREM 1.15. The class @ coincides with the class of recognizable sets.
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PROOF, We begin by showing that @ contains every recognisable set. Let
Y = (s,t,s ,D) by any Z-tree acceptor. Putting 7T = § X Z, we let R be the

ternary relation on T y {c} such that, for s, s', o¢'' ¢ S and 0, 0', 0'' €L,
R((s,0),(s',0'),(s'",0'")) 1ff t(s',8'',0) = s,
R((s,0),¢,(s'",0'")) iff t(s ,8'",0) = s,
R((s,0),(s',0'),¢) 1£f t(s',8 ,0) = s,

and :
R((s,0),c,¢c) iff t(oo,lo,o) -y,

Let C be the set of R-consistent trees; then C £ R by 1.14 (1). Let

P, * . s¥, P ¥ < =¥ be the projections such that, for any (s,0) € n,
po( (s,0)) = s and pl( (s,0)) = 0. Now for any p € 8%, let £(p) be the tree p'
such that dom(p') = {e} U {wa,wd : 7 ¢ dom(p)]} and by = 8, for each

u € dom(p') ~dom(p). The following three propositions can now be proved

simultaneously by tree iaduction:

(1)  py(c) = =¥,
(11) if nmeC, then n\w € C for any v,
(111) f(po(n)) is t-compatible with p,(n) € C;

We omit the tedious but entirely routine argument required. The subset C' of C s
consisting of tHiose trees n such that f("o("))e € D(i.e., such that n €DXE,

or m= A in case s, € D) is a member of @ by 1.14 (111); we then have

pl(c') = T(¥), and hence t(¥) € K.

- Nt I ol

el
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To complete the proof of Theorem 1.15, we must show that every element of
R is recognizable. In view of Theorem 1.7, it suffices to show that each
E:(o, o',0'') is recognizable, and that the projection of a recognizable set is

again a recognizable set.

Let L be an alphabet, and 0, o', 0'' € Z U {e]. We first assume that
ocfe. Foreachp €Z Y {e], let s be a distinct new symbol, let s, be another
symbol not among these, and put § = [lD] U [s“ :p €L U {e}). The function

t :S XS XZ -5 1is defined as follows: for p e Z, u', u'' €Z y {e},

t('“n' viok) =8y ifu=g, p' =o', and p't =o',

V)

= 0“ othervise,
and
t('u".b’"') = t(sD,cD,u.) =
Putting Y = (s’t’.e’ [lD}‘, we have that ¥ is a Z-tree acceptor and T(¥) =
Ez(o,o',o"); thus, Ez(o,o',o' *) 1s recognizable whenever o 4 ¢. In case ¢ = ¢,
then !:(o,o',o") is either ot or §; both of these are recognizable sets, since
ifY = (s,t,co,b) is any IZ-tree acceptor such that D = §, then T(Y) = 2#,

wvhereas if D = ¢, the T(Y) = @.

Finally, we assume that !:1, 22 are two alphabets and that g is a projection
of }:r into }.‘.g. We wish to show that if A ¢ 2{ is recognizable, then g(A) is
recognizable. Let ¥ = (5,t,s ,D) be a Z-tree acceptor such that T(U) = A.
Without loss of generality, we may assume that g maps }:l into 22. Let
8- (8,t',[l°],b) vhere
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t'(s,s',0) = {s'' : s'' = t(s,s',u) for some p such that g(u) = o},

for each o ¢ 2‘.2. 8 {s a nondeterministic Za-tree acceptor. A straightforward
argument by tree induction shows that an S-tree m is 8-compatible with a
Ly~tree 7 iff m is Y-compatible with some I -tree T' such that g(7') = 1.

From this it follows that g(A) = T(®) and hence that g(A) is recognizable.

As a consequence of Theorem 1.15, we have that all the properties of R
given in Definition 1.13 and Theorem 1.14 apply to the class of recognizable
sets. We shall often make use of this fact without explicitly citing 1.13, 1.1k,

and 1.15.

THEOREM 1.16. A set X < {a,b]" is regular if and only if X = Uyep Ex(7) for

some recognizable set A.

PROOF. Assume that X is regular and let ¥ = (S,t,lo,D) be a {a,b}-automaton
such that T(¥) = X. Let J be the subset of S x (S U {e}) x (S y {e}) such
that (s, 8',8'') ¢ J iff either s' = ¢ and 8'' = t(s,b), or else 8'' = ¢ and s'

' = t(s,a). Let A' be the set of J-consistent S-trees r such that T ™ 8,3 .
A' is recognizable by 1.14 (i), (iii). A simple argument by induction shows

that every w € {a,b]* is a terminal of some member of A'. Now suppose

T €A' and v ¢ dom(T). We shall prove by induction on |w| that t(w) = L

If w = ¢, the t(w) = s, =T, If W] >0, say w = ua, and t(u) = 7,7 them, by

the J-consistency of 7, we have 1 = t('ru,a), and hence, t(w) = t(t(u),a) = L

Now let A = {7 : 7€ A and T, €D for w ¢ fr(r)}; then A is recognizable, and

from the remarks above, t(w) € D iff w ¢ fr(r) for some T € A. It follows

that U1-€A fr(r) = T(¥U) = X.

- T AR L A e
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Conversely, assume that A is recognizable and X = U'r eAfr(T)° Let
U= (s ,t,so,D) be a Z-tree acceptor such that T(U) = A. We define a sequence

*
of sets D, W € {a,b} , as follows:
D =D,

Dia = {s : t(s,t(7),0) € D, for some T ¢ t# and o ez},

D. = {s : t(t(7),s,0) € D, for some T ¢ s* and g€z}

wb
*

Now let ¥ = (S,t,s ,D ) for each w ¢ {a,b} . Then T(%) ={rhw:r e T(U]}

so that w ¢ U'reA fr(7) 1££Z N '1‘(2&') #@. Let ® = (B,r,D,F) be a {a,b}~automaton,

where
B={S':S" c8SandS'#dg},

and for each S' ¢ B,

r(s',a) = {s : t(s,t(7),0) € S' for some T ez# and g € Z},

r(s',b) = {s : t(t(r),s,0) € S for some T € ¥ and gell,
and finally,

F={S':8'"¢cS and t(so,so,c) € S' for some g € Z}.

Let w ¢ [a,b]*; it follows, by induction on |w], that r(w) = D, and since

w € T(8) iff t(oo,so,c) € r(w) for some g ¢ £, we then have that w ¢ T(®) iff
zn r(q') $0, i.e.,, 1ff w € UTeAfr(-r).
The construction of the automaton 8 from the given tree acceptor Y in the

proof of Theorem 1.16 may be made effective; we need merely note that there

exists a tree 7 such that E(-r) = g {ff there exists such a tree depth < S.
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g2xcept in Definition 1.1, we have so far restricted consideration to trees
of order 2. The modifications to our development required to effect the
transition to trees of any finite order p > O are entirely straightforward: for

example, the notation o[7,7'] is changed to, for any n < p,
olrt'yeee,niP)] = (ceololay / 71) [a) / 7' D)eecla_, / Py,

' in Definition 1.2, the transition function t has domain S(p) X £ instead of

(n+l) = s(n)

8(2) X Z (where s(l) =S and S x 8); and in Definition 1.13, we

replace FZ(O,O';U") by

gz(q,ob,...,ob_l) = {r : for some w, Ty - g, Tw.o - Ogre°*) 1h.p - °p-1}‘

With these modifications, we can extend our concept of ".:cognizable set" to

apply to sets of trees of any given finite order p.

In the remaining sections of this paper, we shall assume that these
modifications have actually been carried out. Thus, we shall sorai of tree
acceptors of order p and recognizable sets of order p, and we shall cite
theorems of Section 1 with the understanding that, if necessary, they are to

be modified to apply to trees, acceptors, etc., of arbitrary finite orders.

A IZ-tree of order 1 is essentially the same as a finite sequence of
members of Z, i.e., a Z-word. Consequently, one may identify tree acceptors
of order 1 with ordinary finite automata and the recognizable sets of order 1
with the regular sets, so that automata theory becomes a special case of the

theory of tree acceptors.

i "'\‘W S D P VPSS e WA S s oo =

L e
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It is an easy consequence of Definition 1.1 that a tree T of order p is
also of order p' for any p' > p. We may naturally inquire whether a recogni-
zable set of trees of order p remains a recognizable set when it is regarded
as a set of trees of order p' > p. This is indeed the case; in fact, by simple

constructions of tree acceptors we obtain
LEMMA 1.17. Let Y be a tree acceptor or order p > 0.

(1) 1f p' > p, then there is a tree acceptor U' of order p' such that
) = ().
(11) 1If p> p' > 0 and every tree in T(U) is of order p', then there is
a tree acceptor ¥' of order p' such that T(¥) = T(W').
(144) If p* > p > 0, then a set A of trees is a recognisable set of order

p 1f and only if A is a recognizable set of nrder p'.

As a consequence of Lemma 1.17, we have that Theorem 1.7 holds even if
no restriction is placed upon the order of the recognizable sets involved.
Lemma 1.17(1ii) states, roughly speaking, that recognizability is a property
independent of order, so that we may describe a set as recognizable without

specifying its order.

Notice that Theorem 1.16 may now be improved as follows: It places no
essential restriction on the regular sets to assume that their underlying
alphabets are always subsets of {‘:I. :1=0,1, ...}, and under this assumption

we have that

A set X is regular if and only if X = UTGAfr(T) for some

recognizable set A.
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SECTION 2. A CHARACTERIZATION OF CONTEXT-FREE LANGUAGES

In this section we shall give an example of the application of the
results of Section 1 to the theory of algorithmic languages; namely, we shall
characterize the context-free languages by means of recognizable sets. These
results were first obtained by Mezei and Wright [19], although their fbmula-
tion is technically different from ours. Ginsburg [14] is our principal source

for notation, terminology, and results concerning context-free languages.

A context-free grammar is a lL-tuple G = (V,Z,P,,) where V and I are

alphabets, Z SV, P {s a finite subset of (V-I) x V*, and , € V. Elements of
V-Z are called variables, elements of I are constants and elements of P are called
productions; a production (§,v) € P is denoted by £ -~ v, For u, v ¢ V*, we write
u =V (or simply u = v when G is un&crotood) if for some Uys Yy v' e V*,

#*
and £ € V, we have u = u gu,, € - vi, and v = uov'ul. We write u =, v
if there exists & finite sequence of words Ugr eeey U € V* such that
u=u,u =V, and for each 1 < n, Uy W U the sequence Uy soey U is then
called a_derivation of v from u. The language generated by G, L(G), is the
set of words w ¢ I¥ such that m = w. Of course, if , ¢ Z, then L(g) = {;].

A set of L is a context-free language if L = L(G) for some context-free grammar G.

A grammar G = (V,Z,P,.) 1is called e~-free if it has no production of the
form £ - €. Theorem 1.8.1 of [14] states that for any context-free language
L there exists a c-free grammar G such that L(G) = L ~ {e}. Another result we
require from the theory of context-free languages (c.f. [14], Lemma 1.4.6) is

the following: for any £ ¢ V-2, and u ¢ V*, 4 » u iff either € = u, or there
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*
is a production € - Co *** Cn-1 in P, and words Uy eeey Uy g € V' such that

*
for 1 < n, Gy up andum=u oo U g0

Given an ¢~free grammar G = (V,Z,P,u), V-trees can be associated in a
natural way with derivations £ = Uy cos mu 4, vhere £ ¢ V. In fact when-
*
ever £ m u ¢ V*, there is at least one such V-tree 7 such that g, and

R A where Wys sce, W are the terminals of t in lexicographical order.
o n

The formal details of the correspondence between V-trees and derivations are

set forth in the following definitions and lemma.

DEFINITION 2.1. The operator Q on arbitrary trees is defined by tree recursion:

(1) Q(p) = €,
(11) Q(O’[‘I’(o), ...,'r(p)]) = 5 {f 7(0) s ,,.. = 1-(p) = A,
- Q(‘r(o))...Q('r(p)) otherwise.

Q(r) is simply the concatenation of the symbols appearing at the terminals

of r, taking the terminals of r in lexicographical order.

DEFINITION 2.2. Let G = (V,Z,P,u) be an e-free grammar. CG is the set of
V-trees defined by the conditions

(1) Ve
(11) 1f T(O), seo, ‘r(n) e CG, .nd g - Téo) see Tén), then

g['r(o),ooo,‘r(n)] G CGO
The order of the trees in CG is the maximum of the set

{13U {|u] : &€ = u 1is in P for some £ ¢ V}.

s e R i pas - e e g et 5
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LEMMA 2.3. Let G = (V,I,P,,) be an e-free grammar, £ ¢ Vand u ¢ V', Then
(4 #" u 1ff there is a TE °c such that Te = ¢ and Q(r) = u,

Proof. First, assume £ = u. We proceed by induction on the length of the
derivation establishing ¢ =¥ u. If this length is O, then £ = u and

e cG' Otherwise, there are Co? ***» G F V and Uys sees U € V* such
that £ - o **° Cpu=u eeeu, and for each 1,¢ = uy by means of a shorter
derivation. Applying the inductive hypothesis, we obtain trees -r(i) € CG such
that ‘rgi) = ¢, and Q(T)(i)) =u. Putting 7 = g['r(o),...,'r(n)] we find

T€Cy and Q(7) = u,

Conversely, assume T ¢ C,, 7_ ™= &, and Q(1) = u. We proceed by tree in-
duction. ¢ = A is impossible. 1If ||| = 1, then ¢+ = € = Q(7), and £ =* £.
If ||v|| > 1, then 7 = g['r(o),...,'r(n)] for some T(o)’.“,T(n) ¢ C; and £ such
that € - T£°)...-r§“). No 1-(1) is A, 80 Q(7) = Q(¢(°))...Q(7(")). But by the
inductive hypothesis, 1’51) - Q('r(i)), for 1 <n. Hence,
e «* o(r{)...q(-(™) = q() =

*
The set of trees T ¢ C, with r_ =u and Q(~) ¢ 2, where G = (V,Z,P,p) i
is a ¢~free grammar, 1is simply the set of 'derivation trees" for G, a concept
well-known in the literature. This set will be denoted by AG. The impact of
Lemma 2.3 is simply that L(G) = Q(AG).
LEMMA 2.4. If L is a context-free language, then L = Q(A) for some recognizable ; i

set A. A

PROOF. Lot G be a grammar such that L ~ {e] = L(G). We will show that A; is

recognizable. Let p be the length of the longest word u which occurs in a

production £ - u in P, The p + 1 place relation R on Z U {e} is defined as

= i N e i g |
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follows: for any &, ( , +++) §» B< P, R(g,co,...,cm,...,e) if and only if
£ - Co'“gm is in P, Then AG is the set of R-consistent trees 1 such that

T = b and T, €2 for every w fr(r). Thus, AG is a recognizable set. The
desired result now follows, since we have either L = Q(AG) or L= Q(AG U {A})

according as ¢ ¢ L or ¢ ¢ L, while both AG and AG U {A} are recognizable.

Lemma 2.4 may come as no surprise to those familiar with the theory of
context-free languages. Somewhat less obvious is the fact that the converse
of 2.4 also holds--that Q(A) is a context-free language whenever A is a

recognizable set.

THEOREM 2.5. A set L is a context-free language if and only L = Q(A) for some

recognizable set A.

PROOF. The "only if" part has already been established as Lemma 2.4. We shall
show that if g9 = (S,t,so,D) is a tree acceptor (of order p) then Q(T(u)) is a
context-free language.2 Let y be a new symbol not in Zor 8 x (2 U {e}), and
let G be the context-free grammar
G = (U (s x(Zu {e}])),z,P,u)
where P contains the following productions:
g = (r,8) for some r ¢ D and § € Z y {e},

<'o;€) - €,

2The author would like to express his thanks to the referee for suggesting this

proof, which is considerably simpler than the original.
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(t(oo,...,lo,a),q) - for all g € 2,
<t(.1,ooo,.p,a),c> - (.,61) see (IP,OP), for all .1 [ Z,

and 8, € Z U {e} with 8, # ¢ for at
least one {.

First we shall prove

(1) <E(T)’Te) b Q(7) for all v ¢ 2

by tree induction. If t = , we have t(7) = 8y T = € Q(r) = ¢, and need

merely note that (co,e) —~€. Ifr=g¢l, then E:T) - t(lo,-..,lo,o),

and 7_ = Q(t) = . Then (t(oo,...,lo,a),a) - Q(r) by definition of I'. Finally,
suppose T = o[cr(l),...,-r(p)] with at least one 1-(1) # A. By the inductive
hypothesis, (E(-r(i)),-rgi)) oy Q(‘r(")), for 1 = 1, «s., p. Now t(7) -.t(z(-r(l)),

...,:(-r(p)),c), and since at least one -r(") is not A, we have

E1)yo) = @),y Lo @ P, Py

by definition of P. Since Q(t) = Q('r(l))...Q('r(p)), we have shown
(t(1),0) -f Q).

Next we shall prove

(2) 1If (s,0) =" u ¢ 2:#, then u = Q(7) for some t with t(r) = s and 1. = o
This will be done .by induction on the length n of the shortest
derivation establishing (s,0) =" u. n = 0 is imposiible since (s,0) ¢ . 1f
n = 1 then the only possible prt;duction is (t:(.o,...,lo,a),o) - g, 80 we must
have u = gand s = t(lo,on,lo,a). We merely take 1 =g, Ifn=1and u = ¢
then the only possible production is (lo,e) - €, 80 take v = A\, Finally,

suppose n > 1 and (2) holds whenever the underlying derivation has fewer than

—
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n steps. There is a production (8,0) = (01,61) vos (op,e’) and words UTIRIYY
u, € 2" such that (s,,8,) =" u, (vith dertvations shorter than n) and u = Bpeesu
By definition of P, s = t('l"""p"’)’ and by the inductive hypothesis, there

are trees -r("), i®1, ..., p,such that E(f“’)) = '21) -6, and Q(-r(")) =u.

(1),...,1-(9)]. Thea t(t1) = s and T, = 0. Since at least one 8, 1is

Let v = of+
not ¢, at least one -r(") is not A; hence, Q(7) -Q('r(l))...Q(t(’)) = u, This

completes the proof of (2).

Suppose 1 ¢ T(). By (1), (E(r),7) = Q7). Stnce ¢ T(w),
€(r) €D, 80 u = (E(r),7,) Then u =" (1), and it follows that Q(T(x)) < L(G).
Conversely, suppose u ¢ L(G). For some s ¢ D, 8 ¢ Z U {€}, u = (s,8) and
(s,6) » u. We have from (2) that there is a tree t such that Q(1) = u,
t(r) ~ s, and 17, = 0. Since s ¢ D, this means that t ¢ T(%), and it follows

that L(G) c Q(T(%)).
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SECTION 3. DECIDABILITY OF THE THEORY OF p SUCCESSOR OPERATIONS

In this section, we apply the theory of recognisable sets to a decision

problem of mathematical logic: We will show that, for any p < w, the weak
second -order theory of p successor operations is decidable {Corollary 3.8).

This answers in the affirmative a problem of Buchi, stated in Section 9 of

[1]. 1In case p = 1, this result was first reported by Buchi and Elgot [5], and
published by them in [1] and [10]. Most of the methods employed in this section
are generalisations of those used by Elgot in [10].

Let B be any set; let p, q be any ordinals; for {1 < p, let 01 be & m, -ary
operation or B; and for j < q let Rj bean j-nry relation among the elements of

B. f%hen we say that the system

'- (BO,..Q’oi’...’l ,...’lj,...)1< ,N

in a algebraic structure of similarity type o = «-o""’-i.’"'>1<p’

<°o””’nj"")j<q>' In case p = 0, so that there are no operations, 8 is

called a relstional structure. B is the yniverse of ®, denoted by |g.
Associated with the similarity type o of ® is the following calculus L ”
called the monadic second-order language of type a (or, for brevity, simply
"the language of 8"). The logical constants of l’a are ~ (equality), the
usual propositional connectives (A,v,=,~,»), and the quantifiers V and 3.
The nonlogical constants of I‘a are: For i< p, @ m, ~ary operation symbol 91’
and for §<q, a n,-ary relation symbol 51. (For purposes of clarity, when a
structure has an operation O or relation R, we endeavor to use the correspond-

ing boldface letter O or R as its representative in the formsl language. This

Sl e S
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is not alwvays desirable, and exceptions to this rule will be made clear when
they occur.) There are individual variables X, ¥) 8 +.¢, and monadic predicate
(set) varisbles X, Y, Z, ... + Quantification over either kind of variable is
permitted. The notation y € X, read "y is a member of X," will be used instead
of the more usual Xy or X(y). The notion of a term, or an atomic formula, and
the notion of a variable being free in a f rmula, are understood in the usual
vay. A sentence is a formula without free variables. If F is a formula of L o
vhen we write, e.g., r(z,:_:), we mean that the variables y, x occur free in F,
but we do not exclude the possibility that F has other free variables. If y',
x' are any other variables, then when we write, e.g., F' = F(y',x'), wve mean
that F' is obtained from F by substituting y' for each free occurrence of 4

and x' for each free occurrence of x, while making suitable systematic changes

of the bound variables of F so as to avoid "conflicts of variables.”

Relative to a given structure 8 of similarity type o and a given in.arpre-
tation nf the individual and set variables, the notions of truth and satisfac-
tion are defined in the usual way. The individual variables will always be
interpreted as elements of the universe [§. We shall consider two different

interpretations of the set variables. In the strong interpretation, set

variables range over arbitrary subsets of the universe, while in the weak

interpretation, only finite sets are admitted as possible interpretations of

the set variables. The strong second-order theory of 8, SS(8),1is the set of
sentences of I'a which are true under the strong interpretation, and the weak
second-order theory of ®, WS(8), is the set of sentences true under the weak

interpretation. An elementary formula is a formula without occurrences of set

variables, and ET(8) is the set of elementary sentences true in 8.

i St e
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If C is any class of formulas, we say that a formula F is a Boolean
combination of members of C if F is a member of the least class C' containing
C and such that whenever G, He¢ C', then G A H, G V H, and - G are also members

of c'o

The symbols L, T are used for iterated disjunction and iterated conjunc-

tion, respectively; e.g., for L> 0, ZK‘ Fi denotes the formula Fo Ve VF

21
Let F(x,y,X) be a formula of L, with exactly the free variables x, y, X,

and let x, y ¢ [§ and X c |§. Then F(x,y,X) means that F is satisfied when

X, ¥, X are interpreted as x, y, X, respectively. Of course, we must also

specify whether the weak or strong interpretation is to be used. This will

always be clear from context. In fact, we shall rarely use the strong interpre-

tation except in Section 5; thus, in the absence of specific notice to the

contrary, the reader may assume that the weak interpretation is intended.

DEFINITION 3.1. Let O < p< w. The algebra of p successors is the algebraic

structure
mp - <Np,s°, o o,sp-1>
*
where Np = {ao, ""‘p-l} and for each i < p, S, is the unary operation defined
by .

si(x) = xa, for all x ¢ Np.

i
The monadic second-order lan e associated with®} , {i.e., L
ke 8‘1‘8 P’ % ((0,...,p-1))’

will be denoted by Lp, and its p unary operation symbols by §°, coey §p-1'

s
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In the remainder of this section, we shall assume, except where otherwise

specified, that p is a fixed but arbitrary positive integer.

There are two main steps in our discussion leading up to Theorem 3.7 and
Corollary 3.8: First, we develop a normal form for formulas in Lp, and secomd,
we correlate a recognizable set A with each formula F in normal form, and show

that F is satisfiable in !np 1f and only 1f A # &,

The terms y of I.p are all of the form y = §, ...5, (x), k < w, for some
o k-1
individual variable x; the integer k is the rank of y. We say that two
formulas F, G of Lp are equivalent and write F ~ G if they have the same free

variables and the universal closure of F ® G is in WS(!RP).

LEMMA 3.2. Every formula F of Lp is equivalent to a formula G which contains

no occurance of the equality symbol, nor of any term of rank > 1.

PROOF. By iterative applications of the two rules

(1) y~o~vilyeYmgel]
and

(2) x~Y~vulueXeucy)

where ¥, ¢ are any terms and X, Y are any set variables, we obtain a formula

F', with no occurrence of =, such that F ~ F'.

Now suppose that §j ...§.1 (x) is a term of rank > 1 (i.e., k > 0) occurring
o k
in F'; this occurrence must be as a part of an atomic formula §j ...§J (x) eY
o k

for some set variuble Y. We note that

- e re— m———
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(3) §jo---§jk(§) €Y~3y ... Tylvily ezZaxezl

A j-l(v E[!j €le §1J(¥j-1) €2]) A Yy € Y]

The desired formula G may now be obtained from F' by repeated applications of

rule (3).

DEFINITION 3.3. A principal n-formula is a formula in I.p of the form

T (M (F AT

i<n wp 01,0
vhere x is any individual variable, and for some n distinct set variables,
Ko""’xn-l’ each Fi is either x ¢ )_(1 or - x € )_(1, and each G’.’J is either

§J(§) €X, orax €X,. A formula

@) eer (@K 1) H(X,eeeX )

vhere H is a Boolean combinution of principal n + m-formulas and each (Q X j)

is, independently of j, either Vv X, or 3 ’-(j’ in normal form.

3
LEMMA 3.4. Every formula of LP with no free individual variables is equivalent

to a formula in normal form.

PROOF. Let F(go,...,l_(n_l) be any formula with exactly the distinct free set
variables ’-‘o""”—‘n—l' By 3.2, F ~ F' where F' is a formula with no occurrence
of ® nor of any term of rank > 1. Note that F' necessarily contains at least

one set variable. The two equivalences,
VxVYH~VYVxH,

TxvYH~3FXVYVx[xeX-H] ATx[xekXl],

- §
3
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apply to any formula H in which X does not occur free. By iterative applications
of these equivalences we obtain a formula F'' ~ F' such that no set variable
quantifier in F'' occurs within the scope of any individual variable cu-~ntifier.

Now F'' is equivalent to its prenex normal form, i.e.,

B! ~(q J-{)n"'(Q }-‘)n-lm-l P '(go""”-(n'lm-l)

where X ,...,X are all distinct, each (Q }_{j), j=n, «os, n+m-1, is

n+m-1

either v X, or & }_{j, and F'"' (}_{0,...,§n 1) contains no set variable quantifier.

J +m~
To complete the proof, we must show that F''' is equivalent to a Boolean combina-

tion of principal n + m-formulas.

Let C be the class of Boolean combinations of principal n + m-formulas and
atomic formulas y € X, or s,(¥) € Xy where j <m, 1< p, and y is any individual
variable., Let C' be the class of formulas equivalent to formulas in C. That
F''' ¢¢' is shown by induction; we will only discuss the existential quantificr
step, namely, we assume that G € C and show that T x G € ¢'. Of course, if x
does not occur in G then J x G ~G. Otherwise, G may be put in its disjunctive

normal form, , and the quantifier distributed:

z KkGl,

Ix6~Z,, Tx6

L’
where each GL is a conjunction in ¢. For each £ < k, all the conjuncts of Gl,
in which x does not occur free may be passed outside the scope of the quantifier;

i.e., we apply the rule that for any formula H and any y ;"':_c,

Tx[HAyeX]~TxHAY€X,
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or the similar rules concerning conjuncts -y € X, §,(y) € X, or = §,(y) € X.
Finglly, :l.f. for any j < n + m such that neither x ¢ J_tj nor = X € 2_(1 occurs as
& conjunct within the scope nf T x, then x € X j vax eX j may be inserted as
a conjunct and the distributive laws again applied; a similar treatment applies
when neither §1(é) € Xy nor = _S_i(g) € l_lj occurs within the scope of I x. The
resulting formula, Gi,io in C, G}' ~Ix6 g and the variable x occurs in G;
only as the bound variable in principal n + m-formulas. Since § x G is equiva-
lent to a Boolean combination of such formulas G'z, we have I x G ¢ €',

Lemma 3.4 generalizes Elgot's Lemma 1, Secticn 5.5, in [10] to Lp for p > 1.
The proof uses essentially the same ideas. We may note in passing that the proof
of 3.4 makes no use of special properties of the operations or !Rp. The lemma
can be proved for any monadic second-order formal language in which there are no
nonlogical constants with more than one argument place for individual variables:
We can even introduce higher-type predicte constants with one individual variable

argument place and one predicate variable argument place; the treatment of such

higher-type constants would be formally similar to the treatment of "¢".

For each n, let Z A be the set of n-termed sequences with terms in the set

{o,1}; O(n) denotes the n-termed sequence consisting entirely of O's.

The order ot trees and acceptors discussed in this section is assumed to

be p; thus, 1if Tl is an alphabet, TT# is the set of T trees of order p.

DEFINITION 3.5. Let 7 ¢ 2#, and let X , ..., X, be finite subsets of Np.

Then T represents xo,---, xn-l if, for each 1 < n and any w ¢ Np, we xi if

and only if the i-th term of Ty is 1.
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Every tree 1 ¢ Z# represents exactly one sequence of sets Xo ""’xn-l = Np,
and every sequence of finite sets xo yeee ,xn_l < Np is represented by some tree

TE E#. The tree t is not uniquely determined by the sets xo,..., X however;

n-1’
eg., if 7 = O(n) for some w ¢ fr(r), then both T and t[{w/A] represent the
same sets., Nevertheless, there is always just one minimal Zn-trea which repre-
sents the given sets xo,...,xn_l;it may be obtained as follows: Let T be any

tree represénting the sets xo,...,xn_l, and put
n).#
T =T, if hw ¢ {0( )] ;
= ¢ otherwise;

then t' is the minimal tree representing xo,...,xn_l.
Let us say that two Z:n-t:rees are equivalent if they represent the same
sequence of sets. If A is any set of zn-trees, we denote by cl(A) the set of

all trees equivalent to some tree in A, and by mnl(A) the set of minimal trees

in c1(A).
LEMMA 3.6. If A c L 1is recognizable, then so are cl(A) and mnl(A).

PROOF. Let Y = (S,t,s,D) be a L _-tree acceptor such that T(y) = A. First,
suppose that A = mnl(A). Let s* be a new state not in S, and put

* 5
B=(sy {s*},t',8%D'), wvhere D' =D y {s } if s ¢ D, D' = D otherwise, and

t' is defined as follows:

t' (s, .. .,s*,o(“)) = ¥,

and if either g # O(n) or some s, is not s*, then

i
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t'(‘o, o .,.p_l,c) L t(.s, 000,3;_1,0)

' =3 if s, = 8. With A = mnl(A), it is easily

[ ]
where '1 8 {

*
i:l.fsi#a and s

seen that T(®) = c1l(A).

i

Now consider the case that A # mnl(A). Since obviously c1l(A) = cl(mnl(A)),
it 1is, in view of what has already been proved, sufficient to show that
mnl(A) 1is recognizable. Again, assume A = T(), gy = (S,t,s,D). Let

g~ (8, t'', I,D), where for all Bgreees 8o €8, 0€l,
tll(.o,ooo,.p-l,o) = {t('o,ooo,.p-l,O‘)}

and
(m) 45,

I={s: t(r) =s for some t ¢ {0

Then§ 1is a non-deterministic zn-tree acceptor with the following two properties:
(1) every v € TE ) is equivalent to some member of A, and (ii) mnl(A) ¢ T(g).
Thus, mnl(A) consists of those rt ¢ T(§) such that T [P O(n) for each w ¢ fr(r).

It follows from 1.14 and 1.15 that mnl(A) is recognizable.

Note that in the proof of 3.6, the construction of the nondeterministic
tree acceptor § is effective, since in the definition of I we may restrict

consideration to those trees T ¢ {O(n)} which are of depth < §.

If F()_(o ,...,)_[n_l) is a formula of I.p with exactly the free variables

}-‘o""’gn-l’ then we denote by T(F) the set of those minimal L -trees which

represent a sequence X ,...,X , such that F(X ,... ’xn-l)'

S

T A & i st o D T i
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THEOREM 3.7. T(F) is recognizable for every formula F with exactly the free

variables }_(o, .o "’-{n-l'

PROOF. It is sufficient, by 3.4, to assume that F is in normal form. Our
proof is by induction on the length of F. In each case of the induction we
shall exhibit a recognizable set equal to T(F); the reader should encounter no

difficulity in supplying the simple argument which establishes this equality.

If F is a principal n-formula, say I :_c(TTKn(Fi A ".Kpcij)]’ vhere F,, G’.-1
are as in Definition 3.3, let g ¢ Zn be defined by the condition

the i~th term of c is 1 iff F, 18 x ¢ }_(i,

i

and for } =0, ..., p -1 let °j € Zn be defined by the condition

the i-th term of cj

= O(n), then T(F) = {A}. But if at least one of

1s 146 G, 18 8,(x) € X,.

NWifO'O'o"N' p—]_

Oy Ggr *+*2 Op g is not O(n), then we have
T(F) 'mnl(Ezn(G, UO:"UUP_I)):

which is recognizable by 1.15 and 3.6.

If F is a Boolean combination of principal n-formulas, then we need merely
note that the recognizable sets are closed under N, (j, and ~, e.g., if F 18

G v H and T(G), T(H) are recognizable, then so is T(F) = T(G) () T(H).

Finally, suppose that F is I }-{n+1 G(}_to,...,)_tn) and T(G) is a recognizable

subset of Z‘.ﬁ Let g be the projection of Z‘.ﬁﬂ into Z‘.ﬁ defined by

+1°
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g((ko,...,kn)) - (ko,...,kn_l) for each (ko""’kn) €L 4"
Then T(F) = mnl(g(T(G))), and this is recognizable by 1.13, 1.15, and 3.6.

The characterization of the recognisable sets developed in 1.13, 1.14, and
1.15 1is not essential to the proof of 3.7--one can also give direct constructions
of tree acceptors Y such that T(Y) = T(F) for each of the various forms of the

formula F.

COROLLARY 3.8. ws(ap) is decidable for every finite p.

PROOF. If F is 'nn arbitrary sentence of Lp, then, by 3.4, F 1is equivalent to

a sentence F' vhich is in normal form. F' has at least one set variable;
suppose, for example, that F' is T X G(X). (In case F' 1sV X G(X), we consider
instead T X = G(X) ~= F'.) Now F', and hence F, is a member of ws(np) 1££
T(G) 1s not empty. But T(G) = @ is effectively decidable by Corollary 1.12.

We need only verify that F' and T(G) can be effectively obtained. This is

accomplished by examination of the proofs of 3.4 and the results in Section 1.

We shall devote the remainder of this section to a discussion of applica-~
tions of 3.7, deferring consideration of the many applications of 3.8 until

Sections 4 and 5.

Theorem 3.7 has a converse: Roughly speaking, "every recognizable set can
be expressed in the form T(F) for some formula F." This statement fails to be
strictly true only because the underlying alphabets of the sets T(F) are not
arbitrary, but ar2 always one of the Zn. In the following theorem, we restrict

consideration to the alphabets En ~ [o(“) }, denoted by A, in order to avoid

vl o’ pg—— g
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difficulties associated with t!_ ambiguities in the representation of ssquences

of sets by z:n-trcu. The A, still provide alphabets of arbitrarily large finite

cardinality.

THEOREM 3.9. Every set recognitable over some alphabet &y B> 0, can be

expressed in the form T(F) for some formula F.

PROOP. Por each g € Z, lot PPoenm,_P,vhere P 1is x ¢ X, if the i~th term

i<n ¢’ i
o
of gis 1, and F, = x € X, otherwise. Similarly, let °j be Men Gu vhere G’..1
is §j(’-‘) €X if the i-th term of ¢ 1s 1 and Gij is - gj(§) €X, otherwise. Put
“‘o(n) Go(n)
4 .
Hn =Ix A= "KP J ]

Then Hn(xo,... ,xn_l) holds iff the minimal tree representing X)o eeey Xy 18

a tree over Ah.

Now let A be any recognizable subset of ﬂf’ IfA= 4, then A = T(Hn).

IfA=E (°’°o""’°p-1) for some g, 0 ;++, L € A Ve put

&
%
Fsﬂn/\aa_:[r"/\ﬂjq, 6,
and then we have A = T(F). In case one or more of the °j is ¢, we need merely
aj o(n)
replace G.1 by Gn .

Now suppose that A = B N C for some recognizable sets B, C. In general,
the alphabets for B and C may properly include A, However, it is easily seen
that we can find m 2 n and recognizable sets B', C' over A such that

P(A) = B' N C' where p is the projection of A:\f into c# defined by
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P((to,...,tn_l)) - (fo,ooo,ra.l’o,ooo,O)
for each (r,+.«,r,_,) € 4 - There exist formulas F', P'' such that T(F') = »'
and T(P'') = C'. Ve let
PolX oo TR (M o TxlzeX]arar),
and obtain A = T(F). The cases A =3 yCand A = B ~ C are handled 1a iihe
manner.

Pinally suppose that A = p(B) for some projection p and recogaiseble set B.
Without loss of generality, ve may aseums that the umderlyiag alphadet of B 1o
some A, ® 20, There exists & formls G « c(g.,....g._1) ouch that T(G) = 8.
Let Y, o !._1 be distinct nev varisbles which do mot occur ia G, and put

Pexy ... TY L (6(X,..000 ) AV_!.[I“~(!’(!..--~.!._1)

L "(0)(!090"0 1)) A

Lo
(f(')(,_o,...,g._l) . r"')(a_:.....,x_z, B}))E
Thea T(F) = A.
Theorea 3.9 nov follows from 1.15.

COROLLARY 3.10. A oubset L of 4 1is & context-fres language 1f and oaly if
Le Q(t(?(xo,...,!._‘))) for soms forwmula F.

A subeet X ¢ l’ fs weak second-order definadle in :’ if for some formuls
P(x), with exactly the one free individual varisble x, X {s the set of x ¢ l’
such that F(x) holds under the weak interpretstion. We say then that X s
defined by F {n "; eimilarly, we speak of subsets of l’ | l' 68 defined by
formulas F(x,y), and so on.

SN
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couounrl.n. A sudbset of l’ {s veak second-order definiadle in ’p if and

only 1if it {s regular.

PROOF. In view of 3.7, 3.9, 1.16, and the remsrks at the end of Section 1, we
need only shov that, for any formula P with exactly the free varisbles

Xyreeor X i Um(,)ft(ﬂ 1e definadble in a’. In fact, if

c(s'!"°"l!..1) = zm‘! 3 !‘] A "‘a'n[q !J(!) G !tll
then U'“(') fr(r) 4o defined by
32 !o eee 3 !..‘['(!o’ooo,!..l) A c(!'!o,ooo,s..t)]o

In this peper ve have identified three distinct methods of defining e
recognisadble set A C Q:, 2> 0: A may be expressed in emy of the forms

(I) The result of & finite sequence of applicetions of projections
and Boolean set operstions starting with eets of the form

lz(a.ao....,a’_‘):
(1I) T(¥) for some tree acceptor W;
(111) T(F) for some formuls '(!o""'sn-l) ot l.'-
These msy be compared vith the following methods of defining s regular set
B ¢ [¢°,...,o'_ll. : D may be expressed in any of the forms

(1') The tesult of & finite sequence of applications of the operstions
‘9 ®, U, N, and ~ starting vith finite sets of words;
(11')  T(%) for some finite sutomaton W;

(111') (x : P(x)) for some formula F(x) of L'.
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The equivalence of the forms of definition (I), (II), and (III) has been
established in this paper by 1.1k, 1.15, 3.7, and 3.9, vhile the equivalence
of (I'), (1I1'), eand (III') 1s & consequence of well-known results in the
14terature and Corollary 3.11. Examination of the proofs of these equivalences
discloses that each of them is completely effective.

LW 3.12. (1) 1f & definition of a recognisable set A © A:, ©> 0, is given
in one of the forms (I), (II), (111), then definitions of A in each of the other
two forms cas be effectively obtained.

(11) 1f & definition of a regular set B C 'l" p>0, 1s given in one of
the forms (1°'), (I1I'), (I11'), then definitions in each of the other two forme
can be effectively odtained.

In (1) Buchi considered the "very weak second-order theory” of l'. in
vhich the set variables range, not over erbitrary finite subsets of l', but
oaly over those finite subsets vhich are chains with respect to the inftial
segment relation. Theorem 10 of his paper states that the clase of subeets
of l’ definable in the very weak second-order theory coincides with the
tegular s deete of l’. Thus ve see that, from the point of view of defining
subsets of l’, the weak second-order theory is no more powerful than the very

wveak secoad-order theory.

B i o i i s agiiglie b o odin. ¢ b
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SECTION 4. APPLICATIONS

In this section we shall apply the results of Section 3 to establish the
decidability of a variety of weak second-order theories. The sams general
method will be used in nesrly all cases: the decidability of WS(¥) 1is proved
by {nterpreting WS(y) into ws(ap) for some p (usually p = 2). This interpre-
tation is based upon a definition in Ul(lp) of a substructure of ’p isomorphic
to the given structure 9. For example, if % = (A,0,R) vhere O 1is & binary opera-
tion and R s a binary relation, and there ave formulas F(x),G(x,y,8), ¥(x,y) such that

Yo (A',0,R')
vhere
x € A 1£f P(x) holds in 2’,
0'(x,y) = s 4£f G(x,y,s) holds ua',
R'(x,y) 4£f W(x,y) holds in !’

then ve say that the triple (F,C,H) is & veak second-order definition of ¥ in

a'. It follows from the existence of such a definition that WS(W) 1s interpre-
tadble in tl(a’), and hence that WS(¥) s decidadle. (Por further information

on interpretation of theories, the resder may consult (2%).)
THEOREM 4.1. PFor each finite p > O, %, is vesk second-order definsble in R..

JROOF. Let A = ({a} (UKp(b}l)).' Then A is & regular set, and, by 3.12,
e formuls F(x) defining A in R, can be effectively obtained. Let the terms
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ty 8< w be defined recursion: vo(f) - x, 'n+1(’-‘) - gl“n('-‘)) for each
n. Mtting G,(z,z) -y go(vj(:_z)), ve have that <r,c°,...,cp_1> 1s a defini-
tion of Rp in az.

*
lat N, - {.o"l’“} y for x € lm and n < w, let sn(x) = xa, and let
2" ('u"o"”>' There is a formula Pm(g) defining the regular set

(18] * ()")", and 1€ ve 10t Gy(x,y) be as in the proof of k.1, ve find that

(r.,co,ci,...) is a weak second-order definition of L in R,, and hence,
ll(:') 1s decidadble.

I(Q.) 1s not as rich a theory as one might wish; for example, even the simple
relation "x = l.(y) for some n" is not definable in {t. We can, however, add
s further relation to !. end obtajn more satisfactory results Let Is(x,y)
hold {ff x {s an initial segment of y, and put !'.' 0‘.:“:',:'1»"-)0

TIROREN 4.2 (1) R 1s vesk second-order definsble in %, and hence WS(%)) s
decidadble.

(14) Por eact p > 0, l' is weak second-order definable in !'.-

(144) A set X © [co,...,c'_‘). is regular if and only Lf it is wesk
second-order definable in a'..

IB0OP. A definition of R’ in R, {8 (P ,1,6,,6,,...) vhere P, G, G,, ... are
ae sbove and I(x,y) s

vEgeXav s (s)exvs (s) eX-seXl-xeX]Al(x)ar(y).

o g
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To prove part (ii), it is sufficient to note that, for each p > 0, the

formula
v 2[I(y,x) =y ~x v Eml(gj(z).z)]
defines the set {.o"""p-ll* om mw'

Let the mapping f : {no,al,...]* - {a,b}* be defined by t(aj) - abj,
§=0,1, ... and f(uv) = £(u)f(v) for all words u, v. (f is simply the
isomorphism which establishes that a:n is defined in ®, by (F I,Go,...).) Assume
p>0, and let fp be the restriction of £ to {.o"""p-l]*' A generaliszed
sequential machine (as defined in Ginsburg and Rose [16]), which effects the
mapping fp can easily be constructed, so that, by a theorem in [16], a set
Xc ['o""’.p-l)’ is regular if and only if fp(x) is vegular. Now we note

the following two properties of the definitions of 3; in 12 end of ’P in ’:n:

(1) 1f X 1is definadble in 3;, then £(X) is definable in X
(2) 1f X is definadle in ’p’ then X is definable in a'..

[
Suppose that X C ['o'"'"p-l] . I1f X is regular, thea X {s definadle in ’p’
so by (2), X is definadble in a;- Conversely, 1f X {s definable in a'., then,
by (1), €(x) = zp(x) is definsble {n ®,. DBut this implies that IP(X) is regular,

vhence X is regular also.

Theorem 4.2 (1), 17 a somewhat different form, vas obtained by
J.N. Thatcher [26). Theorem 4.2 (111) improves 3.11 by giving a single decidadble
theory, “(’:s)' vithin vhich every regular set may be defined (subject to the

restriction that the underlying alphabet be a subset of l'o"l"“‘)'



2k July 1967 50 T™-T38/035/00

Let o be any order type. By WS(«) we mean WS(Y) where 9 = (A,R) is any
relational structure such that R is an order relation on A of type a. The
notion of (weak second-order) definability is extended in the natural way,
i.e., 8 type o is definable in %, if some structure Y of type o is definable
in 12. All the definitions of order types in 12 ve give will be with the aid
of the following ordering of lla:

DEPINITION 4.3. The left-to-right ordering of N, is the relation <, defined
in the weak second-order theory by the formula

x<y w8 (y)x) v is,(x),7) v (18 (2),x) A 1(8,(s),7)].

To understand the nature of the "left-to-right ordering,” it may be
helpful to draw a graphic representatioa of '2’ similar to Pigure 1. Por
X,y €W, ve have x <y 1ff the branch to x procedes leftward from soms point
on the branci to y (possibly y itself), or, equivalently, the branch to y
procedes rightward from some point on the branch to x.

Por any class 8 of order types let C(3) be the closure of S under the
order-type operations + (addition), - (multiplication), and * (converse). 1
is the type of the ratiomals.

THEOREM 4.k, If 8 * (qn) U (0,1,...) and a ¢ €(8), then o 1s weak second-
order dcfinsble in ®,, and hence, W8(q) is decidadle.
JBOOF; We shall shov how to obtain, for each o ¢ C(8), a regular set
‘a c l.‘, wvhich 1s ordered of type o by the left-to-right ordering, <, and which
satiefies the additional condition

(1) it x, y, € A, then x i3 not an initial segment of y.

e W D o aTia dAR A T e e

-
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=

For each n < w, let An . [b°.,...,b la}, let

A = (b) ¢ {a} and Ay - {ab,abb}” * {a}.

1f Ay AB have been obtained, then Aot‘*B = ({a} ° Aa) y ({v} ° AB) and

[ L] ° =
Aa°B Aa AB A& f(Aa), where f is the projection of N, onto N, such that

f(a) = b and £(b) = a. It is easily verified that if Ad' A_ satisfy (1), then

B
Am, Aar'e’ and A&v also satisfy (1). The proof is completed by induction,
showing that each Ay @€ c(S), is indeed ordered of type o by < (the condition

(1) 1s needed in the case Au ).

8
The improvement made by Theorem L.L over results known prior to the

publication of [7]) is simply the {ncludion of n in the set S.

Let us say of two order types a, B that o = B if WS(a), WS(p) contain
the same sentences with n or fewer qualifiers. Thus, WS(a) = WS(B) 1ff

oa® n° for every n. In (9], Ehrenfeucht gave a condutona-vo denote it by eu-

°The condition en(a,a) is defined as follows: WUe imagine s game between two
players, 1 and I1. In the first move, player 1 selects one of the order types
a,f and chooses a finite sequence of types vhich are initial segments of this
one, and player 1l responds with an equally long sequence of initial segments
of the other of a,p; ¢.g., 1chooses °o"”’ak < f, and II responds with
TN W < a« In succeeding moves, the two players repeat this process,
extending the sequences already obtained. Player Il wins {f, after n -ovu‘
the resulting sequences are order isomorphic; otherwvise player 1 vins. The
condition &n(a,a) holds just in case player 1I has a winning strategy
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which, when modified to apply to order types instead of structures, yields the
following:

For any two ordinals a, B, if & (o, B), then g = P

Ehrenfeucht also showed that if o is any ordinal then, for each n, there exists
o' < o such that en(a,a'). It is not difficult to show that the operations

+, °, and ¥ preserve the condition &, namely, for any order types ¢, o,

8, 8') 1£ ¢ (oyp) and & (o',p') then & (ato',p¥8'), € (o * o', B * §'), and
¢,(%8). 1In this vay, ve obtain

COROLLARY L.5. Let OR denote the class of all ordinals. 1If o ¢ C(OR j {n}),
then WS(o) 1is decidable.

Corollary 4.5 improves a result in the literature (see [3], [11], and
(9)) by which W8(a) i~ decidable for every ordinal o. In [12] it 1is stated
that Ehrenfeucht had obtained a decision method for the theory of ordinal
addition; from this result, the decidability of WS(a) for every ordimal o
follows at once by Theorem 10.1 of [12]). Ehreafeucht never published his proof,
however; and later, a proof of theee results was published by Buchi [3].

As this paper vas being written, the author learned (by personal communica-
tion) that M.0. Rabin had found & proof of the decidability of 83(R). (This
proof has since been published in [22].) 1It is wvorth noting that all
our theorems concerning definability of order types continue to hold in
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the context of the strong second-order theory. (To show this, one has only

to exhibit a formula F(X) such that for X N, F(X) holds in the strong
interpretation iff X is finite.) Because every denumerable order type can

be embedded in the rationals, Rabin's result at once yields, as he has pointed
out, the decidability of the strong monadic second-order theory of countable
linear orderings, thus considerably improving a result of Buchi [4], to the
effect that the corresponding theorem holds for countable well-orderings.
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SECTION 5. DECISION PROBLEMS OF LOCALLY FREE ALGEBRAS

In this section we shall apply Corollary 3.8 to prove the decidability of
the weak second-order theory of a general class of structures which includes
the ’p as particular cases. We make essential use of Buchi's theorem on the
decidability of 88(31) (2], and of the generalized products of Peferman and
Vaught [12].

let d = “'oo’""op-l"o"""q-l) be an algebraic structure. If
¢ fA' cA, then %(A') denotes the subalgebra of Y generated by A': MNamely,
s'(A') - (A",o;,...,op_l,: ,...,n .y) vhere A'' 1s the least set containing A’

and closed under the operations oo""’op-l’ and each of 0!, l; are the reetric-
tions of 01, lj, respectively, to the set A''., In case A' consists of a single

element, 1.e., A' = {x}, ve write %(z) . G'(A').

1f @ is any class of algebraic structures of a given similarity type, then
W8(a) 1s the set of weak second-order sentences true in every elemeant of @. A
sentence is true in @ if it 1s true in every member of @. If T is any set of
sentences in & language L, then WS(T) = WS(@), where @ is the class of structures
¥ having the same type as L and such that T c WS(¥). Interpretations similar to
these apply to the notiations 88(a), BT(T), etc.

1 1 i  § §
Let I be any nonempty set and let l1 o (A( ),o: ),...,oi_z,l‘(’ ),...,ls_i),
i € 1, be algedraic structures of the sams similarity type, indexed by elements
of the set I, such that the A“) are pairvise disjoint. The cqrdingl sum of
the .t 1s the structure % = (A, o""’op-l’. ,...,l l) vhere A 'U1 {(")
% o(‘) O, s0e0, P.l, .M l .qex J j - o’ (AN ‘-10 !u case
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the universes of the u1 are not disjoint, then we understand their cardinal sum
to be the cardinal sum of a set of structures li, i el with ﬂi x Y for

each i, vhich do have mutually disjoint universes.

Iat p> O and let L be the language with only the operation symbols
Qo""’gp-l’ vhere 0, is n -ary, n, >0, for { =0, .., p~1. In [17], MalZcev
considered the elementary theory based upon the axioms

91(51,---.5%) P 9,(:,,---.znj). 0s1<j<p,
™
(I) 91(51’...'301) ~ g‘(z‘.}"‘)!ni) ol "1.1(51 ~ZJ)’ 0si< P,

x 4 §(x) for every term j vith at least one occurrence of x.

Structures satisfying the axioms (1) are called locally free slgebras over the
Qs +e+s Q) is denoted by £. Mal'cev showed that ET(L) 1o decidsdble. On the

other hand, Tarski, see [24], has established:

If n, 2 2 for at least one 1, the. W8(£) is undecidable.

1
In this section we shall consider WS(£) under the assumption n, ® 1 for each {;
i.e., £ is the class of locally free algebras over p unary operations. Here-
after all the operations 0‘ are assumed o be unary; to emphasise this, we will
use the symbols 81 instead of 01. Moreover, we shall assume p = 2; this is done
merely for notational convenience, and the reader will encounter no difficulty
should he wish to undertake the tedious job of revising our theorems and proofs
80 as to apply to arbitrary finite p. The monadic second-order language with
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just the two unary operation symbols 8,9 8, is denoted simply by L. Under
these assumptions, £ becomes the class of nonempty structures of type ((1,1))

satisfying the axioms
(11-1) So 245, U

(11-2)

8o XmS, Y VS XS Y =Xn),

(11-3) x 4 §(x) for every term y with at least one occurrence of x.

We shall see later that the schema (II-3) can be replaced by a single weak

second-order axiom.

Let X be the class of structures satisfying (II-1), (I1I-2) alone. The
elements of X will be called X-algebras. We shall show that WS(X) is decidable,
and obtain the decidability of WS(L) as a corollery of this result. Our first
step will be to conduct a mathematical analyzis of the structures in the class
X. This analysis will be used in subsequent metamathematical arguments to

reach the desired goals.

DEFINITION 5.1. A X-algebra ¥ is simple if for every x, y € |d| there exists a

gz such that x, y ¢ 6”(:); if in addition there éxists an element z such that
U= Gu(z) , then o is generated and z is called a generator; if there is no such
z, then Y is ungenerated. The class of simple X-algebras is denoted by Kgs
and its subclasses of generated and ungenerated algebras by )(8 and xu,
respectively.

The term ''generated” and ''ungenerated" apply only to simple X-algebras.
To avert confusion, however, we sometimes redundantly refer to X-algebras as

"generated simple'" or '"ungenerated simple."
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THEOREM 5.2. An algebra is a X-algebra if and only if it is a cardinal sum

of simple X-algebras.

PROOF. That a cardinal sum of X-algebras is again a X-algebra is immediate
from axioms (II-1), (II-2). New let Y = (A,so,sl) € X; for x, y € A, wve write
X ~ y if there exists z ¢ A such that both x, y are members of lsu(z)|.
Clearly, ~ is an equivalence relation. For any x € A, let x be the equivalence
class of x, and let A = {x : x € A}, 1If, for any x ¢ A, we let % - (i,s;,Si)

where s",, Si are the restrictions of So, s, to )-(, then ¥ i3 the cardinal sum

1
of the 3%, X € A.

Henceforth, when we say that y§ is a term, we mean that §y is a term in the
language L. The rank of y is denoted by |y|. The composition of two terms

¥ =S, «0e8 (x), x =S, «..8 (y) is denoted simply by concatenation:
-10 -in-l - -'10 -jm-l
w 18 8, ...8, §j "'§j (y). We say that y is a prefix of yy and y is a
o n-1 ‘o 1
1 n+l n
suffix of yy. ¢ 1s | itself, and for finiten 21, = ¢ yo Given a

m-

structure 9 = (A,So,sl) and x, y € A, we write x = §(y) just in case F(x,v)

holds in 4, where F(x,y) is the formula x ~ y(y).

LEMMA 5.3 (Cancellation Law). Let ¢, x, y be any terms.
(1) vxVylox(x) = o¥(y) » x(x) ~ y(y)] is true in x.
RPNy Yt
(i1) 1If y has a prefix §' of the same rank as y and y - y'y'', then

V x V ylx(x) » ¥(y) = x =~ ¢''(y)] is true in x.
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PROOF: From (II-1), (II-2) by induction on the rank of the term ¢ in (1) and

x in (11).

LEMMA 5.4. Let 9l be a generated simple X-algebra. If for some u ¢ |t| and

some term y of L, |y| > O and u = y(u) then
(1) u 1is a generator of 9;

(1) 1f x € |v| and x = y(x) for some nontrivial term y of L, then

x = y'(u) for some suffix y' of y.

PROOF. Let y be any generator of 4, and let ¢ be a term such that u = q;(y).
There is a finite n such that |t“| 2 |p|. Now, ﬁn(u) = o(y) also, so by
5.3 (1), y = y'(u) where §' is a suffix of ¥®. It follows that u is also a

generator of 9.

Now consider part (ii). From (i) we have that both u, x are generators
of Y. Say u = ¢(x); we then have *n(u) = p(x) for every n. If |g| < |y,
then we take n = 1 and have, by the cancellation law, x = g'(u) for some
suffix §' of y. If |p| > |y|, let n> 1 be such that 'Hn-1| < |o| = 14"
Applying the cancellation law to the equation vn(u) = ¢(x), we again obtain

that x = y'(u) for some suffix §' of y.

Figure 2 is a tree diagram of an element 9] = (A,SO,SI) of X. Here the
»*
universe is the set A = {¢,b} |) ({a,ba} * {a,b} ), and the two operations are,
for all x c A, So(x) = xa, Sl(x) =xb 1f x # b, and Sl(b) = ¢, The structure

9] shown satisfies the equation Sla‘l(e) =c,
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:l:l \lb

Figure 2., Diagram of a X-Algebra.

If a generated X~algebra also satisfies the axioms (1I-3) (i.e., it fails
to satisfy the hypothesis of 5.4), then it is isomorphic to mz. Thus, the
impact of Lemma 5.4 is that a generated X-algebra is either isomorphic to m2

or has just one "loop." This is expressed in the following:

THEOREM 5.5. Two generated X-algebras 9], § are isomorphic if and only if either

(1) each of 4, B is isomorphic to 2,
or else
(i1) there exists a nontrivial term y such that ¥ x[x ~ §(x)] holds in .

both 9 , ® , while for any nontrivial proper suffix §' of y, T x[x ~ y'(x)]

fails.in both ¥, 8.

Notice the one-to-one correspondence between terms and words over {a,b}:

a term § corresponds to its value {(c) in the particular X-algebra Nye We thus



24 July 1967 60 T™-738/035/00

establish a many-to-one correspondence between words over {a,b} and the
isomorphism classes of generated X-algebras; the empty word corresponds to the
class of algebras isomorphic to ma, and the other classes are determined by
words distinct from €: given an isomorphism class not containing ma, let

2l TRERRYE-N (x) be a term such that the condition of 5.5 (1ii) is satisfied
n

i
o

by every structure in the class; then the word y(c) e{a,b}* corresponde to

this class. Two words u, v determine the same isomorphism class if and only 1if
there exist words u', u'' such that u = u'u'' and v = u''u’,

Let pred(x,y) be the formula
§°(§) =Yy V §1(’_‘) o Y

If y ¢ |U| for some K-algebra 9, there is at most one x such that pred(x,y)
holds in 9 (although there may not be any such x, e.g., if 9 = ma and y = ¢),

If there is an x such that pred(x,y) we denote it by pd(y); otherwise, we let’

pd(y) = y. We now put
pd°(y) =y
pd" () = pd(pd"(y))
for each finite n.

DEFINITION 5.6. Let 9 be any ungenerated simple X-algebra. A descriptor of

Y is any set M of natural numbers such that for some x ¢ |9,
= § . a = n+l
M =0 e = (™))

THEOREM 5.7. Let 9, B be any ungensrated simple X-algebra.

(1) If x ¢ |¥|, then %(x) =0,
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(11) 1f x, y € |4| then there exist integers m, n such that, for each k,

m+keM if and only if n + k ¢

M .
A X i,y

(411) of = B 1f and only 1if 9 and B have identical desciptors, i.e., there

exist x ¢ |4|, y € 18| such that M”’x - Mm,y'
PROOF. If x ¢ |Y|, then gu(x) is a generated simple X algebra. Suppose su(x)
is not isomorphic to ma. Then by 5.5 (i1), there is a nontrivial temm ¥ and
auc Bu(x)| such that u = y(u). Let y ¢ |U|; then for some =z ¢ |y,

u, y¢ |6”(z)| . Since u = y(u), we have that u is a generator of eu(z) by
5.4 (1); hence y ¢ |6"I(u)|' Since y is arbitrary in |4], it follows that

lu| csu(u). But this contradicts the hypothesis that 9 is ungenerated.

If x, y ¢ |9, let z be such that x, y ¢ 6“1(2), say z = pdn'(y). Then

pdm+k(x) = pdn+k(y) for every k; hence, m + k ¢ M

qu, fork.o,ln s e .
)

Finally, we consider (iii). The "only if" part is obvious. Let x ¢ 191,

y € |8| be such that MM <" . Now |9| consists of the following disjoint
' )

M
B,y
subsets

Ax - !69[(")"
B = {pd"(x) : n< o},
and for each n,
¢, n = 18,(8,(a"™(x))| 1fn en

= 16,(8,(Pa""}(x)))| otherwise.
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Similarly, |B| consists of disjoint classes Ay, By, Cy w8012, a
) ’

We then have G”(Ax) 9_-6%(Ay) and em,(c ) geﬁ(c ), n=0, 1, ..., since,

y,n
by (1), all of these structures are isomorphic to mz. Let the function

x,n

£ : |9 - |B] be defined as follows. On A, f is the natural isomorphism mapping
Ax to Ay, ard, similarly, on each Cx 0’ f is the natural isormorphism mapping
b
cx,n to Cn,y, n=0,1, ... « On Bx’ we put
n n
£(pd (x)) =pd (y), n=1, 2, ... .
That £ is, in fact, an isomorphism of 9] onto B now follows from M”’x = M&by'

Figure 3 1is a tree-like diagram of an ungenerated X-algebra. The

descriptor associated with the element x indicated is {0,3,6,...}.

Theorem 5.7 shows that each ungenerated X-algebra is determined up to
isomorphism by a single subset of the natural numbers. Two such sets lead to
the same algebra if and only if '"ultimately, one is a translation of the

other," in the sense of 5.7 (ii).

Theorems 5.2, 5.5, and 5.7 provide a comprehensive analytic description
of the X-algebras. We now turn to the application of this description to the

decision problem for WS(X).

LEMMA 5.8. Each of the theories ws(xs), WS(KS), ws(xu), and WS(g) is finitely

(semantically) axiomatizable.

PROOF. The required axioms will be formulated with the aid of some special

formulas (in addition to those already defined, e.g., pred (x,y)):

Clpd(x,X) =V ulu 4 x Au ¢ XV vlpred(v,u) = v € X]]

sal(x,y) =13 X[y ¢ X A Clpd(x,X)] AV X[y ¢ X A Clpd(x,X) - x € X].
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Thus, Clpd(x,X) holds in a X-algebra 9 just in case the predecessor operation,
pd, maps X ~ {x} into X. An elementary argument shows that for amy x, y ¢ |,
Sal(x,y) if and only if y ¢ Gﬁ(x). (Notice that this equivalence remains true
under the strong interpretation.) From this it follows that the class of

X-algebras satisfying

(1) vxvy3dz[sal(z,x) A Sal(z,y)]
coincides with Kg» the class of simple X-algebras. The subclasses xg’ K, of

K, are, respectively, characterized by the additional axiom

(2) 3 xvyysal(x,y),

or its negation. Finally, we note that the axiom schema (II-3) is equivalent
to the single weak second-order sentence

(II-4) - T x T ylx by A sal(x,y) A Sal(y,x)],

so that the class § of locally free algebras is determined by the axioms (II-1),

(11-2), (II-L4).

Theorem 5.5 and the remarks following it indicate a correspondence between

words over {a,b}, i.e., elements of N, and the isomorphism classes of generated

K-algebras. Our proof of the following theorem is based on an implementation

(8]

of this correspondence in the weak second-order language. Namely, we exhibit
weak second-order formulas which, relative to any word u in |m2|, define in mz
’ a simple generated X-algebra belonging to the isomorphism class corresponding

to u.

THEOREM 5.9. ws(xs) is decidable.
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PROOF. Let

F(u,x) == 85al(u,x) v =3 z pred(z,u)

6, (u,%,y) = F(u,x) A F(u,y) A [(S (x) du Ayn~S (x)

\% (§o(’_‘) AUA-T 2 Pred(E:Z))]

G,(u,%,3) = F(u,x) A F(u,7) A [(5,(x) 4y Ay~ S (x))

Y (§1(’_‘) ~U A= T2 pred(z,y))].

(Note that — @ z pred(z,y) holds for y ¢ N, iff y = €). Now let u ¢ N, and

consider the structure Y(u) = (D, P ,P,), where
D = {x : F(u,x)},
Po(x) =y iff GO(U,X,}'),

Pl(x) =y iff Gl(u,x,y).

I1f u = ¢, then %Y(u) is ™, itself. If u ¥ ¢, say u = y(ec) for some nontrivial
term y, then 9(u) is a generated X-algebra satisfying the axiom T x[x ~ y(x)].
It follows that every generated K-algebra is isomorphic to some %(u), u ¢ N2.
Let E be any sentence in the language L. Using standard techniques of replace-
ment of atomic formulas by formulas and relativization of quantifiers (e.g., a
formula §o(:_c) ~ Yy 1s replaced by Go(t_x,a_:,z), a quantifier ¥ X ... is replaced
by I X[V 2[z € X = F(u,z)] A ..., and so on), we can effectively obtain a
formula E'(u) such that E is true in 9(u) if and only if E'(u) holds in R+
Since every element of xg is isomorphic to some 9(u), it follo-ws that E is true
in xg if and only if V u E'(u) is true in R,. But ws(ma) 1is decidable; hence,

so is WS(}(s).
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Our next ssli rcault will be that ws(xu) is decidable. The principal tools
we shall use in the proof of this are the generalized products of Fererman and
Vaught [12]. Since their results on generalized products apply only to elemen-
tary theories, we are cbliged to replace ws(xu) by an equivalent elementary
theory: In fact, we shall correlate with each structure Y a structure l!+ such

that WS(Y) Ls decidable iff ET(y') is decidable.

DEFINITION 5.10. Let 9o = (A’oo’""on-l’Ro"“’Rn-l) be an algebraic structure,

and let A+ be the set of all finite subsets of A. Then

+
«=ayata 1€,00, 000,00 1R e e, R )

[]
where each 01 is a mi

0 (x yoeesX ) = y, and e(x,y) holds between two elements x, y of A uA if

+1-ary relation such that O i(x seeesXy ,y) L£f
i

andonlyifxeA,yeA,andxcy.

LEMMA 5.11. Let Y be any algebraic structure. We can effectively correlate
with each formula F(x - l,x yesesX 1) in the monadic second-order
language of 9 a formula F'(x RLEY: ST ALLIP A 1') in the elementary language
of 9,[ such that, for any x ,eee) X 1, Yor ***2 Yoo € |!l |,

F'(xo’ooo,xm_l’yo,oco,yn_l) holds in “ if and only if
(1) XyoreesXop € 4|,
+
(11) Yoree¥pq € 'u, ’

and

(111) F(x g000,X l,y ,ooo,yn 1) holds in u.

il oraivn oim o WSS Qe o S sl TR ¢
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PROOF: by standard techniques of eliminating terms in favor of relation

symbols, replacement of atomic formulas, and relativization of qualifiers.

A given ungenerated X-algebra 9 is determined up to isomorphism by any of
its descriptors. The following definition and lemma provide an explicit method
for the construction of an ungenerated X-algebra with any given descriptor.
Some of the technical features of this construction facilitate a later argument

involving generalized products.

DEFINITION 5.12, Let U be any subset of the natural numbers. Then B(U) is the

relational structure (B | B',B,E,TO,TI) where

(1) B is the set of all sequences f = (£f(0),£f(1),...) such that £(1) = ¢
except for one 1, denoted by 2, and f(E) € N,, subject to the restriction that,
if E> 0, then f(E) e {b} N, only if 1?-1 € U and f(E) € {a} * N, only if
E-l ¢ U;

(i1) B' is the set of all sequences f = (£(0),f(1l),...) such that £f(1)
is a finite subset of N, for each i, f(1) # @ for at most finitely many i, and
for each 1 and w ¢ N2’ w ¢ £(1) only if the sequence g such that

g(J) =0 1f § # 14,
=w if § = 1,
is a member of B;
(444) E(f,g) holds if and only if £ ¢ B, g ¢ B', and f(;) € g(g);

(1iv) 'ro(f,g) is defined only for £, g ¢ B: in case

[ [ ~
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then To(f,g) holds if and only if

g = f£-1 and g(g) = ¢,
and in all other cases, To(f,g) holds if and only if
g = f and g(g) = £(f)a;

(v) Tl(f,g) is defined only for £, g ¢ B: in case

£>0, f-1 ¢ U, and £(£) = ¢,

then Tl(f,g) holds if and only if

g = £f-1 and g(g) = €,
and in all other cases, Tl(f,g) holds if and only if
g = f and g(g) = £(£)b.

LEMMA 5.13. Let U be any set of natural numbers. Then there exist. an un-

generated X-algebra 9 such that 9,[+ = B(U); moreover, U is a descriptor of 3.

PROOF. Let B(U) be as in definition 5.12, and put 9 = (B,SO,SI), where for
each f ¢ B, So(f) is the unique g ¢ B such that To(f,g), and S, is defined
analogously from ‘1‘1. The verifications that So ’ S1 are well-defined, that

91+ e B(U), and that U is a descriptor of % are purely routine.

Figure L is a diagram of a structure B(U) where U = {0,3,...}. Each node
corresponds to a distinct sequence f in B, and the value of this sequence at

the one place where it is different from ¢ is indicated alongside.

We shall briefly summarize the definitions and theorems concerning gener-
alized products which are required for the proof of the decidability of

ET()(:). All of this material i. drawn from [12], with some minor changes,

" -y
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£(3) = ¢
Yy £(2) = e
o f(2) =a
£(2) = aa [ = o f(1) = ¢
ftﬂ) - c o f(l) =b
o £(1) = bb
n E(O] = a
u £(0) = b

ﬂ . ufcon-.a /N
: 0

s}

Figure 4, Diagram of a Structure B(U) Where U = {0,3,..0}¢
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mostly notational. The reader should have little difficulty in reconciling
these differences. (The principal difference is our use of monadic second-

order theories instead of the somewhat more general '"subset algebras.')

Let 91(1), 1 ¢ I, be a set of relational structures of the same similarity
type, indexed by members of the nonempty set I. Let & be any relational struc-
ture such that |6] = T, Let F be a formula in the monadic second-order language
of G, and let Go"" ,Gm be elementary formulas in the language of the u(i). The

sequence [ = (F’Go ) ...,Gm) is called a standard acceptable sequence with free

variables x ,...,x if

(1) The free variables of F are at most the set variables X ,...,X ;
-0 -m

(i1) a variable occurs free in some G, if and only if it is one of

i
 JERTEF

Let D be the set of all functions f : I - UiEI |9,|(i)| such that £(1i) ¢ |91(1)|
for each 1 ¢ I. A standard acceptable sequence ( = (F,Go,... ,Gm) with one

free variable X, defines a set D' ¢ D if
D' = {f : F(xo,...,xm) holds in & (under the strong interpretation) }

where for j§ = 0,...,m,

xj ={i:1¢1land Gj(f(i)) holds in 9,[(1) (under the stro‘ng interpretation)}

In case the sequence ¢ has free variables XjseeesX, D> 0, we say that ¢

defines a n-ary relation on D, with an analogous meaning. Finally, a relativized

R 0 RGeS R
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(1)

generalized product of the Y with respect to & is a relational structure

(D. ,R;’ o0 O,R;-]') Where

(1) D' is defined by a standard acceptable sequence with one free variable;
(11) each R"j, j < p, is obtained by restricting a relnti&n R.1 on D to D'

where Rj is defined by a standard acceptable sequence.

Thus, each series of standard acceptable sequences Co""’cn such that co has
exactly one free variable defines a relativized generalized product p{Y,S).

(In this nctation, 9] denotes the entire sequence of u(i), 1¢el; L., Y is a
function with domain I such that each value is a structure of a given similarity
type.) If Q, 8 are classes of relational structures (of suitable similarity
types) then p(Q,8) is the class of all products o(Y,S) where G ¢ g and for each
ie |6|, 91(1) € @. The basic theorem on generalized products (Theorem 3.1,

[12] states:

Any set or relation definable in the elementary theory

of a relativized .eneralized product can also be defined
by a standard acceptable sequence; moreover, this sequence
can be effectively obtained from the defining formula.

We shall not use this theorem directly, b.i rather the following consequence

of it (see Theorem 5.6, [12]):
1f ET(q) and SS(8) are decidable, then so is ET(p(Q,8)).

THEOREM 5 14. Let g be the class of all structures (w,<,U), where U € w. Then
+
there i 1 relativized generalized product p such that p( {me],g) is the class of

all B(U), U c w
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PROOF. We must exhibit a series of standard acceptable sequences €or €10 G
ca, cu defining the product p. The language of g has the constant predicates
< and U, and in the language of 'It; = (N2 U N;, N2’ e, Ro, R1>’ we use the symbols

N, e, l_!o, R In both languages, unsubscripted variables appearing in a formula

1
denote any variables (of the appropriate type) which do not occur free in the
formula. The letters £, g denote functions from u to |£n;| We take

6 = (w,<,U) to be an arbitrary element of R, and we let B(U) =

B U B',B,E,To,'rl) be as in Definition 5.12. Our definitions of the sequences
SVEEEFI<N will be given in such » way that only a straightforward check against
Lefinition 5.12 (which we omit) is required to verify that they do, in fact,

define the universe and relations of B(U).
Let
F (X0 ,%,5,%) =V x[x £ X = x € X,]

ATxlx€X AV ylyeX «xayll
AVEVy[x eX Ay<xA=Tzly<zAz<i]
(2 €% = U() A (x € X = U,

Now 4if

X = {n: £(n) € Ny},

X, = {n : £(n) = ¢},

o, = {0 £(n) € {a] " N},

X, = {n ¢ £(n) € {b) * W),
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then Fl(xo,xl,xz,x3) holds in & (under the strong interpretation) if andonly if £ is a

member of B. We need only define formulas G.1 such thac xj = {n : Gj(f(n)) holds in

+.
mz}, J '0,...,3. hlt

6,(x,) = Nx),
G, (%)) = N(x)) A= Eye(y,x),

Gy(x,) =8 x & y[N(x) A=7 2[R (2,x) vR(2,%X)] AR (x,)
A s.l'(z;’_‘o)]:
where Sal' is obtained from Sal as in Lemma 5.11, and
65(x,) =T x T y[N(x) A= 7 2[R (2,%) v R (2,x) ] AR, (x,y)
A Sal'(z,)_(o)].
These formulas satisfy the required condition, and hence, cl - (FI,GO,GI,Ga,G3)
is a standard acceptable sequence defining B.
The sequence ¢ must define B U B', the domain of 8(U). Let
Fo(XpX)oX %) = Tx v ylx <y -y eX 1 Avxlx ex))
AVEVYly<xA=Tzly<z Az<ix]]
-(x € X5 A= U(y)) v (x e X, A U(y))].

If now X, is as before, and

1

X, = {n: f(n) is a finite subset of Ny}
X5 = (0 ¢ £(n) & (1a] * ) U (€]},

X, = {n: £(n)  ({b} ° N2) U {e}l,
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then ro(xl,xu,xs,x6) holds in & if and only if f ¢ B'. Thus, we let
G, (x;)) == N(x),
05(50) wa N(x ) AV x[e(x,x ) = =3 2[R (2,x) v R,(2,x)] v 6,(x)],
Gg(x,) == N(x ) Av x(e(x,x)) == 2[R (2,x) v Ri(z,x)] v G3(§)],
and find that
g, = (F, vV FL,G,-e,6)
is a standard acceptable sequence defining B U B'.

The sequence (, should define the relation E of 8(U). Let

FZ(J_KO) T x(x eX);

then 1if

X, = {n : £(n) € g(n)},

we find that, for £, g ¢ B Uy B', Fe(xo) holds in G if and only if E(f,g). Put
G (x,r%)) = e(x,x,).

Then G " (F2,G7) is a standard acceptable sequence, and E is the restriction

to B U B' of the relation defined by it.

Let
Fa(X,,%)0%00%,) =T x T ylx e X Ay eX) A {(Tx'[x' <x
AT z[x'< 2 A2<x] AUX') AxE€X)]
AY<xA=Tzly<zAaz<xl AyeXs)
AT x'[x'<xA=Tz[x'<zAz<x]

AUx') Ax X1 AY mx AY €X)1)

2 e, &
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then 1f

X, = in: £(n) e N},
X; = {n: g(n) e N},
X, = {n : £(n) = ¢},

x3 = {n : g(n) = ¢},

=

X, = {n : g(n) = £(n)a},

" we have that for f, g ¢ B U B', F(X,,X;,%5,%;,X)) holds in & 1£f T (£,8). Thus,

we put
Gg(x,) = N(x_)
Go(x)) = Gglx))
G1o%,) = N(x ) A= T 2[R (2,x) v R,[z,x )]
G12(%) = Gye(xy)

G12(%e0%;) = R (20,%,),
and have that c3 = (F3,G8,69,G10,Gu,612) is a standard acceptable sequence and

the restriction to B U B' of the relation defined by it coincides with '1'0.

The sequence gy defining an extension of Tl is similar to C3 , and is
obtained from the latter by making suitable minor modifications to the formulas

F, and G This completes the proof of Theorem 5.1lk.

3 12°

COROLLARY 5.15. ws(xu) is decidable.

+
PROOF. The decidability of ws(xu) is equivalent to the decidability of ET(KU).

= By theorem 5.14 and the results of Feferman and Vaught, this, in turn, follows

from the decidability of WS(!)'(;), which we know from 3.8 and 5.11, and of ss(8),
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where 8 is the class of all (w,<,U), U< w. In [2], Buchi established the
decidability of SS({{w,<)). Now a sentence F is in §S’g) if and only if the
sentence V X F'(X), where F'(X) is obtained from F by replacing each occurence
of the unary predicate symbol U by the set variable X, is in SS((w,<)). Thus,

S5(g) is decidable, and hence, so is ws(xu).

COROLLARY 5.16. The weak second-order theory of simple X-algebras, WS(x,), is

decidable.
PROOF: by 5.9 and 5.15.

Cardinal sums were included by Feferman and Vaught among their examples
of relativized generalized products. We cannot directly use this result in
a proof of the decidability of WS(X), for theclass x+ is not the same as the
class of cardinal sums of members of }(:. Nevertheless, we can still use

generalized products to prove

THEOREM 5.17. WS(X) is decidable.

PROOF. By the Lowenheim-Skolem theorem, as it applies to weak second-order
theories, we may restrict the class X to contain only countable cardinal sums

of members of Ko let g be the class of all structures (U,<) where § $ U c
and < is theA order relation on natural numbers restricted to U. The decidability
of S5(8) follows immediately from that of s ({(w,<)). Let &= (u,<) be a

member of g, let u(i) = (A(i),sc(,i),sgi)) € X, for each 1 ¢ U, ‘and let 8 be the
cardinal sum of the !J(i). We wish to define a relativized generalized product

 such that p(u+,€‘) o !3+; actually, we shall only give an informal description
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1

of P(%,8), for the reader who has studied either [12] or the proof of 5.1k
shm\;ld have little difficulty in supplying the necessary standard acceptable

sequences. f, g denote functions with domain U such that for each i, £(1),

(04,

The universe of p(ﬂ+,) is B y B', where

g(1) ¢ |u

(1) £ €B iff for some L € U, £(1 ) cA °

£(1) = ¢;
(11) £ ¢ B' iff for every 1 ¢ U, £(1i) is a finite subset of A(i), and

, while for all 1 # i

for only finitely many i do we have £(1i) # @.

The relations of p(ﬁl+,6) are

(1) B,

(11) e(£,g), which holds 1ff f ¢ B, g ¢ B', and for every i ¢ U, either
£(1) =@, or £(1) € g(i),

(ii1) Ro(f,g), which holc: iff f, g ¢ B and for every i ¢ U, either
£(1) = g(1) = 8, or RH(£(1),8(1)),

(iv) Rl(f,g), analogous to R .

The product p, thus described, establishes the decidability of ET(}(+) , and

hence of WS(X).

A similar proof of 5.17 which does not use the Lowenheim-Skolem theorem
can be given. However, this proof uses the most general form of the generalized
products, wherein the relational structure over the index set is replaced bv a

subset algebza.
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It 1is not difficult to show that Theorem 5.17 caanot be further improved;
in the sense that neither of the Axioms II-1, II-2 can be omitted while

retaining decidability.

COROLLARY 5.18. Let %, 5. and %\ for k < @ be the subclass of £ consisting
of, respectively, the free algebras, the free algebras with infinitely many
generators, and the free algebras with k generators. Then each of WS(%),

ws(s_), ws(sk), k< w, and WS(£) 1is decidable.

PROOF: Each of these subtheories of WS(X) is finitely (semantically)
axiomatisable.

As remarked at the end of Section 4, M.0. Rabin has recently found
a proof of the decidability of ss(ap) for every finite p.‘_' The constructions
and proofs of this section require only minor modifications to handle the
strong second-order case. The proof of 5.17, at least, becomcs simpler, and
no use of the Lowenheim-Skolem theorem is required. Thus, with Rabin's result

as a starting point, we can establish the decidability of SS(X) and $S(£).

*Su [22].

B e S s



2k July 1967 79 T™™-738/035/00

(1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

(7]

[ 8]

(9]

(10]

[11]

[12]

[13]

REFERENCES

Buchi, J.R. "Weak Second-Order Arithmetic and Finite Automata,"

Zejtschr. £, Math, Logik und Grundlagen d. Math., Vol. 6 (1960),
PP. 66-%-

Buchi, J.R. "On a Decision Method in Restricted Second-Order Arithmetic,"
Logic, Method., and Puil. of Science, Proc.
tanford University Press, 1962,

Buchi, J.R. "Transfinite Automata Recursions and Weak Second-Order Theory,
of Ordinals," Logic, tiethod., and Phil. of Science, Proc.
Congress, AmsterSm: North-Holland Publishing Co.

Buchi, J.R. "Decision Methods in the Theory of Ordinals,"” Bull. Ameg,
Math. Soc,, Vol. 71 (1965), pp. T6T7-TTO.

Buchi, J.R. and C.C. Elgot: "Decisic . Problems of Weak Second-Order
Arithmetic and Finite Automata,” Abstract No. 553~112, Notices, Amer.

Math. Soc., Vol. 5 (1958), p. 834.

Chomsky, N. and G.A. Miller: "Finite State Languages," Inform. and Contr.,
Vol. 1 (1958), PP 91-1120

Doner, J.E. "Decidability of the Weak Second-Order Theory of Two Successors,"
Abstract No. 65T-468, Notices, Amer. Math. Soc., Vol. 12 (1965), p. 819.

Doner, J.E. "Decidability of Locally Free Algebras with Unary Operations,”
Abstract No. 66T-38L4, Notices, Amer. Math. Soc., Vol. 13 (1966),

pPP. 634-635.

Ehrenfeucht, A. "An Application of Games to the Completeness Problem for
Formalized Theories," Fund. Maih., Vol. 49 (1960/1961), pp. 129-1k1.

Elgot, C.C. '"Decision Problems of Finite Automata Design and Related
Arithmetics," Trans. Amer. Math. Soc,, Vol. 98 (1961), pp. 21-51.

Erdov, Ju. L. '"Decidability of Certain Non Elementary Theories," (Russian),
Algebra i Logika Sem., Vol. 3 No. 2 (1965), pp. L5-l7,

Feferman, S. and R.L. Vaught: "The First-Order Properties of Algebraic
Systems," Fund. Math., Vol. 47 (1959), pp. 57-103.

Ginsburg, S. An Introduction to Mathematical Machine Theory. Reading,
Mass.: Addison-Wesley, 1902.




Wi ek

2h July 1967 (ustagage) T™~T38/035/00

REFERENCES (Continued)

[(14] Ginsburg, S. The Mathematical Theory of Context-Free Languages. New
York: McGraw-Hill, 1%3.

[15] Ginsburg, S. and H.G. Rice. Two Families of Languages Related to ALGOL.
J.Assoc. Comput. Mach., Vol. 9 (1962), pp. 350-371.

[16] Ginsburg, S. and G.F. Rose. "Operations Which Preserve Definability in
Languages," J, Assoc. Comput. Mach., Vol. 10 (1963), pp. 175-195.

[17] Mal’cev, A.I. "Axiomatizable Classes of Locally Free Algebras of Certain
Types," (Russian), Sibirsk. Mat. Z,, Vol. 3 (1962), pp. T29~743.

[18] Medvedev, I.T. On a Class of Events Representable in a Finite Automaton
(translated from the Russian by J. Schorr-Kon), M.I.T. Lincoln Labor-
atory Report 34-73, June 30, 1958.

[19] Mezei, J. and J.B. Wright. Generalized ALGOL-Like Languages. IBM
Research Paper RC-1528, December 20, 1965.

[20] Myhill, J. "Finite Automata and the Representation of Events,"” in
Wright Air Development Command Technical Report 57-624, 1957, pp. 112-137.

[(21] Rabin, M.0. and D. Scott. '"Finite Automata and Their Decision Problems,"
IBM J. Research and Develop., Vol. 3 (1959}, pp. 1llki-125,

[22] Rabin, Michael 0. '"Decidability of Second-Order Theories and Automata
on Infinite Trees," Trans. Amer. Math. Soc., Vol. 14l (1969), pp. 1-35.

23] Robinson, R.M. 'Restricted Set Theoretic Definitions in Arithmetic,"
Proc. Amero Matho Soc-, VOl. 9 (1958), Ppo 238‘21"20

[24] Tarski, A. "Some Decision Problems for Locally Free Commutative Algebras,"
Abstract No. 66T~383, Notices, Amer. Math. Soc., Vol. 13, (1966),

pp. 63L.

[25] Tarski, A., A. Mostowski, and R.M. Robinson. Undecidable Theories,
Amsterdam: North Holland Publishing Co., 1953.

[26] Thatcher, J.W. "A Further Generalization of Finite Automata and an
; Application to a Decision Problem," Abstract No. 67T-385, Notjices,
Amer. Math. Soc., Vol. 14 (1967), p. 534.

[27] Thatcher, J.W. and J.B. Wright. '"Generalized Finite Automata, "Abstract
No. 65T-649, Notices, Amer. Math. Soc., Vol. 12 (1965), p. 820.
i

[28]) Thatcher, J.W. and J.B, Wright. '"Generalized Finite Automata with an
Application to a Decision Problem of Second-Order Logic," IBM
Research Report RC-1713, November 16, 1966.

4 bl L L PR R i



TR R - —— S——————— b ]

N
~
’ / \.\;.
\ | S
N - 9] ~
VPR B S VAR
!; oo &«
= ™~
5 March 1970
S
N
./\
ERRATA

Document No. TM-738/035/00 SCIENTIFIC REPORT NO. 8 (AFCRL-68-0034)

Please attach the enclosed DD Form 1473 to the last page of the above
document.

SYSTEM DEVELOPMENT CORPORATION

| T é&»o‘i},,r

Meda Croizat

Technical Editor
Research and Special
Projects Directorate

Reproduced by the
CLEARINGHOUS§

for federal Sciontitic & Tachr

friormatior. Springteld Vi 22151

91T




UNCLASSIFIED

DOCUMENT CONTROL DATA-R& D

of abatrect and indeaing ennelation musi be entered when the everell fo clossitiod,

Socurity classilication of title,

I ORIGINATING ACTIVITY (Corporate auther) 28. REPOAT SECURITY CLABSIFICATION
System Development Corporation UNCLASSIFIED
2500 Colorado Avenue 5. SROUP
Santa Monica, California 90406

L B l':O'Y TITLE

7 TREE ACCEPTORS AND SOME OF THEIR APPLICATIONS

4. OESCAIPTIVE NOTES (Type of repert and ineluaive dates)

"SCIENTIFIC. INTERIM."
S, AUTHOR(B! (Piret name, middie initlal, lasf nome)
John Doner
6 REPORY DATE 78. TGTAL NO. OF PAGES 0. NO. OF REFS
24 July 1907 82 28
. CONTRA [-] Aﬂfuo.contr‘cc F1%28-67-COOOS 08. ORISINATOR'S REPONRT NUMBER(S)
Grant No. AF-AFOSR-1203-67 ™-738/035/00
* Project, Task, Work Unit Nos. SCIZ%TIF%Z REPORT NO. 8
c. 5632=05=01 e . IR NEBGRT HOUS) (Any other mumbers ol may 50 seeignod
DoD Element 144501F
¢ DoD Subelement 681305 AFCRL~68~0034

10 DISTRIGUTION BTATEMENTY

1-This document has been approved for public release and sale;
its distribution is unlimited.

of symbols. Ordinary finite automata prove to be speciul cases of tree acceptors,

priately generalized forms. The tree acceptors provide new characterizations of
the classes of regular sets and of context-free languages. The theory of treae
acceptors is applied to a decision problem of mathematical logic. It is shown
here that the weak second-order theory of two successors is decidable, thus
settling a problem of Buchi. This result is in turn applied to obtain

positive solutions to the decision problems for various other theories, e.g.,
the veak second-order theories of order types built up from the finite types,
w, and 7, (the type of the rationals) by finitely many applications of the
operations of order type addition, multiplication and converse; and the weak
second-order theory of locally free algebras with only unary operations.

DD "2™..1473 Unclassified

This paper concerns a generalization of finite automata, the "tree acceptors,”
vhich have as their inputs finite trees of symbols rather than the usual sequences

and many of the results of finite automata theory continue to hold in their appro-

“

I suPRLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Hq. AFOSR, OAR (SIR) United States Air | Air Force Cambridge Research
Force Laboratories (CRB)
Arlington, Virginia Office of Aerospace Research, USAF
oy Bedford, Massachusetts 01730 R |

~ Security Clessification



Unclassified

Tecurity Classilication

REKY WORDS

LINR €

ROLE wY

Tree Acceptors

Finite Automata
Context-free Languages
Decision Problems
Mathematical Logic

LINK A LiNg B
RoLtg wr AoLE wY
H-.bo
_*
Unclassified

Security Classification

o oo r.




